Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket

Abstract

The crystal structure of human p38 mitogen-activated protein (MAP) kinase in complex with a potent and highly specific pyridinyl-imidazole inhibitor has been determined at 2.0 Å resolution. The structure of the kinase, which is in its unphosphorylated state, is similar to that of the closely-related ERK2. The inhibitor molecule is bound in the ATP pocket. A hydrogen bond is made between the pyridyl nitrogen of the inhibitor and the main chain amido nitrogen of residue 109, analogous to the interaction from the N1 atom of ATP. The crystal structure provides possible explanations for the specificity of this class of inhibitors. Other protein kinase inhibitors may achieve their specificity through a similar mechanism. The structure also reveals a possible second binding site for this inhibitor, with currently unknown function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seger, R. & Krebs, E.G. The MARK signaling cascade. FASEB J. 9, 726–735, (1995).

    Article  CAS  Google Scholar 

  2. Cobb, M.H. & Goldsmith, E.J. How MAP kinases are regulated. J. Biol. Chem. 270, 14843–14846 (1995).

    Article  CAS  Google Scholar 

  3. Johnson, L.N., Noble, M.E.M. & Owen, D.J. Active and inactive protein kinases: Structural basis for regulation. Cell 85, 149–158, (1996).

    Article  CAS  Google Scholar 

  4. Taylor, S.S. & Radzio-Andzelm, E. Three protein kinase structures define a common motif. Structure, 2, 345–355 (1994).

    Article  CAS  Google Scholar 

  5. Zheng, J. et al. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochem. 32, 2154–2161 (1993).

    Article  CAS  Google Scholar 

  6. Bossemeyer, D., Engh, R.A., Kinzel, V., Ponstingl, H. & Huber, R. Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0Å structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24). EMBO J. 12, 849–859 (1993).

    Article  CAS  Google Scholar 

  7. De Bondt, H.L. et al. Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602 (1993).

    Article  CAS  Google Scholar 

  8. Zhang, F., Strand, A., Robbins, D., Cobb, M.H. & Goldsmith, E.J. Atomic structure of the MAP kinase ERK2 at 2.3Å resolution. Nature 367, 704–711 (1994).

    Article  CAS  Google Scholar 

  9. Xu, R.-M., Carmel, G., Sweet, R.M., Kuret, J. & Cheng, X. Crystal structure of casein kinase-1, a phosphate-directed protein kinase. EMBO J. 14, 1015–1023 (1995).

    Article  CAS  Google Scholar 

  10. Owen, D.J., Noble, M.E.M., Garman, E.F., Papageorgiou, A.C. & Johnson, L. N. Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. Structure 3, 467–482 (1995).

    Article  CAS  Google Scholar 

  11. Han, J., Lee, J.-D., Bibbs, L. & Ulevitch, R.J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994).

    Article  CAS  Google Scholar 

  12. Rouse, J. et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78, 1027–1037 (1994).

    Article  CAS  Google Scholar 

  13. Freshney, N.W. et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78, 1039–1049 (1994).

    Article  CAS  Google Scholar 

  14. Lee, J.C. et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746 (1994).

    Article  CAS  Google Scholar 

  15. Raingeaud, J. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420–7426 (1995).

    Article  CAS  Google Scholar 

  16. Lee, J.C. et al. Bicyclic imidazoles as a novel class of cytokine biosynthesis inhibitors. Ann. N.Y.Acad. Sci. 696 149–170 (1993).

    Article  CAS  Google Scholar 

  17. Cuenda, A. et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364, 229–233 (1995).

    Article  CAS  Google Scholar 

  18. Jiang, Y. et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38β). J. Biol. Chem. 271, 17920–17926 (1996).

    Article  CAS  Google Scholar 

  19. Li, Z., Jiang, Y., Ulevitch, R.J. & Han, J. The primary structure of p38γ: A new member of p38 group of MAP kinases. Biochem. Biophys. Res. Commun. 228, 334–340 (1996).

    Article  CAS  Google Scholar 

  20. Pav, S. et al. Crystallization and preliminary crystallographic analysis of recombinant human p38 MAP kinase. Protein Sci. 6, 242–245 (1997).

    Article  CAS  Google Scholar 

  21. Hendrickson, W.A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  CAS  Google Scholar 

  22. Cox, S., Radzio-Andzelm, E. & Taylor, S.S. Domain movements in protein kinases. Curr. Opin. Struct. Biol. 4, 893–901 (1994).

    Article  CAS  Google Scholar 

  23. Wilson, K.P. et al. Crystal structure of p38 mitogen-activated protein kinase. J. Biol. Chem. 271, 27696–27700 (1996).

    Article  CAS  Google Scholar 

  24. Gallagher, T.F. et al. 2,4,5-triarylimidazole inhibitors of IL-1 biosynthesis. Bioorg. Med. Chem. Lett. 5, 1171–1176 (1995).

    Article  CAS  Google Scholar 

  25. Boehm, J.C. et al. 1-substituted 4-aryl-5-pyridinylimidazoles: A new class of cytokine suppressive drugs with low 5-lipoxygenase and cyclooxygenase inhibitory potency. J. Med Chem. 39, 3929–3937 (1996).

    Article  CAS  Google Scholar 

  26. Hanks, S.K., Quinn, A.M. & Hunter, T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52 (1988).

    Article  CAS  Google Scholar 

  27. Schulze-Gahmen, U. et al. Multiple modes of ligand recognition: Crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins 22, 378–391 (1995).

    Article  CAS  Google Scholar 

  28. De Azevedo, W.F., Jr. et al. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc. Natl. Acad. Sci. USA 83, 2735–2740 (1996).

    Article  Google Scholar 

  29. Xu, R.-M., Carmel, G., Kuret, J. & Cheng, X. Structural basis for selectivity of the isoquinoline sulfonamide family of protein kinase inhibitors. Proc. Natl. Acad. Sci. USA 93, 6308–6313 (1996).

    Article  CAS  Google Scholar 

  30. Bourne, Y. et al. Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell 84, 863–874 (1996).

    Article  CAS  Google Scholar 

  31. Pines, J. Cell cycle: reaching for a role for the Cks proteins. Curr. Biol. 6, 1399–1402 (1996).

    Article  CAS  Google Scholar 

  32. Fry, D.W. & Bridges, A.J. Inhibitors of protein tyrosine kinases. Curr. Opin. Biotech. 6, 662–667 (1995).

    Article  CAS  Google Scholar 

  33. Hanke, J.H. et al. Discovery of a novel, potent, and src family-selective tyrosine kinase inhibitor. J. Biol. Chem. 271, 695–701 (1996).

    Article  CAS  Google Scholar 

  34. Badger, A.M. et al. Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J. Pharm. Exp. Therapeutics 279, 1453–1461 (1996).

    CAS  Google Scholar 

  35. Otwinowski, Z. In Data Collection and Processing (Sawyer, L., Isaacs, N. & Bailey, S., eds.) 56–62. (SERC Daresbury Laboratory) (1993).

    Google Scholar 

  36. Tong, L. Combined molecular replacement. Acta Cryst. A52, 782–784 (1996).

    Article  CAS  Google Scholar 

  37. Tong, L. Replace: A suite of computer programs for molecular-replacement calculations. J. Appl. Crystallogr. 26, 748–751 (1993).

    Article  Google Scholar 

  38. Brünger, A.T. The X-PLOR manual, version 3.0. Yale University, New Haven, CT. (1992).

    Google Scholar 

  39. Wang, B.C. Resolution of phase ambiguity in macromolecular crystallography. Meth. Enzymol. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  40. Jones, T.A. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  41. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  42. Carson, M. Ribbon models of macromolecules. J. Mol. Graphics, 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  43. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interracial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, L., Pav, S., White, D. et al. A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat Struct Mol Biol 4, 311–316 (1997). https://doi.org/10.1038/nsb0497-311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0497-311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing