Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase

Abstract

The solution structure of HIV-1 Nef has been solved by multidimensional heteronuclear NMR spectroscopy. The construct employed to circumvent problems associated with aggregation was a double-deletion mutant (Δ2–39, Δ159–173) in which conformationally disordered regions of the protein at the N terminus and in a long solvent-exposed flexible loop were removed, without affecting the properties or structural integrity of the remainder of the protein. Despite the absence of any sequence similarity, the overall fold of Nef is reminiscent of that of the family of winged helix-turn-helix DNA binding proteins. The binding surface of Nef for the SH3 domain of Hck tyrosine protein kinase has been mapped and reveals a non-contiguous (in terms of amino-acid sequence) interaction surface. This unique feature may suggest possible avenues for drug design aimed at inhibiting the interaction between Nef and SH3 domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shugars, D.C. et al. Analysis of human immunodeficiency virus type 1 nef Gene sequences present in vivo . J. Virol. 67, 4639–4650 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kestler, H.W. et al. Importance of the Nef gene for maintenance of high virus loads and for development of AIDS. Cell 65, 651–662 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Kirchhoff, F., Greenhough, T.C., Brettler, D.B., Sullivan, J.L. & Desrosiers, R.C. Absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N. Engl. J. Med. 332, 228–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Deacon, N.J. et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270, 988–991 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Daniel, M.D., Kirchhoff, F., Czajak, S.C., Seghal, P.K. & Desrosiers, R.C. Protective effects of live attenuated SIV vaccine with a deletion in the nef gene. Science 258, 1938–1941 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Cullen, B.R. The role of Nef in the replication cycle of the human and Simian immunodeficiency viruses. Virology 205, 1–6 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Goldsmith, M.A., Warmerdam, M.T., Atchison, R.E., Miller, M.D. & Greene, W.C. Dissociation of the CD4 downregulation and viral infectivity enhancement functions of human immunodeficiency virus type 1 Nef. J. Virol. 69, 4112–4121 (1995).

    CAS  PubMed  Google Scholar 

  8. Salghetti, S., Mariani, R. & Skowronski, J. Human immunodeficiency virus type 1 Nef and p56lck protein-tyrosine kinase interact with a common element in CD4 cytoplasmic tail. Proc. Natl. Acad. Sci. USA 92, 349–353 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Greenway, A., Azad, A. & McPhee, D. Human immunodeficiency virus type 1 Nef protein inhibits activation pathways in peripheral blood mononuclear cells and T-cell lines. J. Virol. 69, 1842–1850 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Saksela, K., Cheng, G. & Baltimore, D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J. 14, 484–491 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, C.-H. et al. A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. EMBO J. 14, 5006–5015 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scjwartz. O., Marechal, V., Danos, O. & Heard, J.M. Human immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the infected cell. J. Virol. 69, 4053–4059 (1995).

    Google Scholar 

  13. Clore, G.M. & Gronenborn, A.M. Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science 252, 1390–1399 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Bax, A. & Grzesiek, S. Methodological advances in protein NMR. Acc. Chem. Res. 26, 131–138 (1993).

    Article  CAS  Google Scholar 

  15. Grzesiek, S., Wingfield, P.T., Stahl, S.J., Kaufman, J.D. & Bax, A. Four-dimensional 15N-separated NOESY of slowly tumbling perdeuterated 15N-enriched proteins. Application to HIV-1 nef. J. Am. Chem. Soc. 117, 9594–9595 (1995).

    Article  CAS  Google Scholar 

  16. Grzesiek, S. & Bax, A. The importance of not saturating H2O in protein NMR. Application to sensitivity enhancement and NOE measurements. J. Am. Chem. Soc. 115, 12593–12594 (1993).

    Article  CAS  Google Scholar 

  17. Freund, J., Kellner, R., Houthaeve, T. & Kalbitzer, H.R. Stability and proteolytic domains of Nef protein from human immunodeficiency virus (HIV) type 1. Eur. J. Biochem. 221, 811–819 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett 229, 317–324 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Freund, J. et al. A possible regulation of negative factor (Nef) activity of human immunodeficiency virus type 1 by the viral protease. Eur. J. Biochem. 223, 589–593 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Huang, Y., Zhang, L. & Ho, D.D. Characterization of nef sequences in long-term survivors of human immunodeficiency virus type 1 infection. J. Virol. 69, 93–100 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ramakrishna, V., Finch, J.T., Graziano, V., Lee, P.L. & Sweet, R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223 (1993).

    Article  Google Scholar 

  22. Lim, W.A., Richards, F.M. & Fox, R.O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Feng, S., Chen, J.K., Yu, H., Simon, J.A. & Schreiber, S.L. Two binding orientations for peptides to the Src SH3 domain: Development of a general model for SH3-ligand interactions. Science 266, 1241–1247 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, X. et al. Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Structure 3, 215–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Scharf, S.J., Horn, G.T. & Erlich, H.A. Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science 233, 1076–1078 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Holtzman, D.A., Cook, W.D. & Dunn, A.R. Isolation and sequence of a cDNA corresponding to a src-related gene expressed in murine hemopoietic cells. Proc. Natl. Acad. Sci. USA 84, 8325–8329 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bax, A. et al. Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol. 239, 79–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Brünger, A.T. XPLOR Version 3.1: A system for Crystallography and NMR, Yale University, New Haven, CT, USA (1992).

    Google Scholar 

  30. Garrett, D.S. et al. The impact of direct refinement against three-bond HN-CaH coupling constants on protein structure determination by NMR. J. Magn. Reson. B104, 99–103 (1994).

    Article  Google Scholar 

  31. Kuszewski, J., Qin, J., Gronenborn, A.M. & Clore, G.M. The impact of direct refinement against proton chemical shifts in protein structure determination by NMR. J. Magn. Reson. B107, 293–297 (1995).

    Article  Google Scholar 

  32. Carson, M. Ribbon models of macromolecules. J. Mol. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  33. Nicholls, A, Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Brooks, B.R. et al. CHARMM: a program for macromolecular energy minimization and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzesiek, S., Bax, A., Clore, G. et al. The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Nat Struct Mol Biol 3, 340–345 (1996). https://doi.org/10.1038/nsb0496-340

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0496-340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing