Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein

Abstract

BAG-family proteins share a conserved protein interaction region, called the 'BAG domain', which binds and regulates Hsp70/Hsc70 molecular chaperones. This family of cochaperones functionally regulates signal transducing proteins and transcription factors important for cell stress responses, apoptosis, proliferation, cell migration and hormone action. Aberrant overexpression of the founding member of this family, BAG1, occurs in human cancers. In this study, a structure-based approach was used to identify interacting residues in a BAG1–Hsc70 complex. An Hsc70-binding fragment of BAG1 was shown by multidimensional NMR methods to consist of an antiparallel three-helix bundle. NMR chemical shift experiments marked surface residues on the second (α2) and third (α3) helices in the BAG domain that are involved in chaperone binding. Structural predictions were confirmed by site-directed mutagenesis of these residues, resulting in loss of binding of BAG1 to Hsc70 in vitro and in cells. Molecular docking of BAG1 to Hsc70 and mutagenesis of Hsc70 marked the molecular surface of the ATPase domain necessary for interaction with BAG1. The results provide a structural basis for understanding the mechanism by which BAG proteins link molecular chaperones and cell signaling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C-terminal region of BAG1 is a three-helix bundle.
Figure 2: Mutational analysis of BAG1 binding to Hsc70.
Figure 3: Contact regions of the BAG1–Hsc70 ATPase complex.
Figure 4: BAG domain is necessary for transactivation of AR by BAG1L.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Takayama, S. et al. EMBO J. 16, 4887–4896 (1997).

    Article  CAS  Google Scholar 

  2. Höhfeld, J. & Jentsch, S. EMBO J. 16, 6209–6216 (1997).

    Article  Google Scholar 

  3. Nollen, E.A.A., Brunsting, J.F., Song, J., Kampinga, H.H. & Morimoto, R.I. Mol. Cell. Biol. 20, 1083–1088 (2000).

    Article  CAS  Google Scholar 

  4. Bimston, D. et al. EMBO J. 17, 6871–6878 (1998).

    Article  CAS  Google Scholar 

  5. Takayama, S., Zhihua, X. & Reed, J.C. J. Biol. Chem. 274, 781–786 (1999).

    Article  CAS  Google Scholar 

  6. Doong, H. et al. Oncogene 19, 4385–4395 (2000).

    Article  CAS  Google Scholar 

  7. Lee, J. H. et al. Oncogene 18, 6183–6190 (1999).

    Article  CAS  Google Scholar 

  8. Jiang, Y., Woronicz, J. D., Liu, W. & Goeddel, D.V. Science 283, 543–546 (1999).

    Article  CAS  Google Scholar 

  9. Thress, K., Song, J., Morimoto, R.I. & Kornbluth, L. EMBO J. 20,1033–1041 (2001).

    Article  CAS  Google Scholar 

  10. Tschopp, J, Martinon, F. & Hofmann, K. Curr. Biol. R 9, 381–384 (1999).

    Article  Google Scholar 

  11. Froesch, B.A., Takayama, S. & Reed, J.C. J. Biol. Chem. 273, 11660–11666 (1998).

    Article  CAS  Google Scholar 

  12. Crocoll, A., Schneikert, J., Hubner, S., Martin, E. & Cato, A. C. Kidney Int. 57, 1265–1269 (2000).

    Article  CAS  Google Scholar 

  13. Stuart, J.K. et al. J. Biol. Chem. 273, 22506–22514 (1998).

    Article  CAS  Google Scholar 

  14. Harrison, C.J., Hayer-Hartl, M., Di Liberto, M., Hartl, F.-U. & Kuriyan, J. Science 276, 431–435 (1997).

    Article  CAS  Google Scholar 

  15. Flaherty, K.M., Wilbanks, S.M., DeLuca-Flaherty, C. & McKay, D.B. J. Biol. Chem. 269, 12899–12907 (1994).

    CAS  PubMed  Google Scholar 

  16. Flaherty, K.M., DeLuca-Flaherty, C. & McKay, D.B. Nature 346, 623–628 (1990).

    Article  CAS  Google Scholar 

  17. Liberrek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. Proc. Natl. Acad. Sci. USA 88, 2874–2878 (1991).

    Article  Google Scholar 

  18. Zeiner, M. & Gehring, U. Proc. Natl. Acad. Sci. USA 92, 11465–11469 (1995).

    Article  CAS  Google Scholar 

  19. Liu, R. et al. J. Biol. Chem. 273, 16985–16992 (1998).

    Article  CAS  Google Scholar 

  20. Schneikert, J., Hübner, S., Martin, E. & Cato, A.C.B. J. Cell Biol. 146, 929–940 (1999).

    Article  CAS  Google Scholar 

  21. Knee, D.A., Froesch, B.A., Nuber, U., Takayama, S. & Reed, J.C. J. Biol. Chem. in the press (2001).

  22. Schneikert, J. et al. EMBO J. 19, 6508–6516 (2000).

    Article  CAS  Google Scholar 

  23. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  24. Fernandez, I. et al. Cell 94, 841–849 (1998).

    Article  CAS  Google Scholar 

  25. Misura, K.M.S., Scheller, R.H. & Weis, W.I. Nature 404, 355–362 (2000).

    Article  CAS  Google Scholar 

  26. Petersen, G., Hahn, C. & Gehring . J. Biol. Chem. in the press (2001).

  27. Sondermann, H. et al. Science 291, 1553–1557 (2001).

    Article  CAS  Google Scholar 

  28. Cornilescu, G., Delaglio, F. & Bax, A. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  29. Brünger, A.T. et al. Acta. Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  30. Cabezas, E. & Satterthwait, A.C. J. Am. Chem. Soc. 121, 3862–3875 (1999).

    Article  CAS  Google Scholar 

  31. Takayama, S. et al. Cell 80, 279–284 (1995).

    Article  CAS  Google Scholar 

  32. Golemis, E.A., Gyuris, J. & Brent, R. In Current protocols in molecular biology (eds, Asbubel, F.M. & Struhl, K. J.) 1–17 (Wiley & Sons, Inc. New York; 1994).

    Google Scholar 

  33. Wishart, D.S. & Sykes B.D. J. Biomol. NMR 4, 171–180 (1994).

    Article  CAS  Google Scholar 

  34. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  35. Christopher, J.A. The structural properties observation and calculation kit (The Center for Macromolecular Design, Texas A&M University, College Station, Texas; 1998).

    Google Scholar 

Download references

Acknowledgements

This research was performed in part at the Environmental Molecular Sciences Laboratory (a national scientific user facility sponsored by the U.S. DOE Office of Biological and Environmental Research) located at Pacific Northwest National Laboratory, operated by Battelle for the DOE. The authors are grateful to the staff at the HFMR facility at EMSL for useful discussions. We also thank K. Baker for protein purification and characterization, X. Jia for assistance with the Varian 500 MHz spectrometer and P. Crescenti for manuscript preparation. This work was funded by the National Institutes of Health NCI, NIHLB, USAMRDC Breast Cancer Program, the University of California Breast Cancer Research Program, the State of California Cancer Research Program, the Susan G. Komen Breast Cancer Foundation, the Human Frontier Science Program and CaPCURE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn R. Ely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briknarová, K., Takayama, S., Brive, L. et al. Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat Struct Mol Biol 8, 349–352 (2001). https://doi.org/10.1038/86236

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing