Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recognition of local glycoprotein misfolding by the ER folding sensor UDP-glucose:glycoprotein glucosyltransferase

Abstract

The endoplasmic reticulum (ER) contains a stringent quality control system that ensures the correct folding of newly synthesized proteins to be exported via the secretory pathway. In this system UDP-Glc:glycoprotein glucosyltransferase (GT) serves as a glycoprotein specific folding sensor by specifically glucosylating N-linked glycans in misfolded glycoproteins thus retaining them in the calnexin/calreticulin chaperone cycle. To investigate how GT senses the folding status of glycoproteins, we generated RNase B heterodimers consisting of a folded and a misfolded domain. Only glycans linked to the misfolded domain were found to be glucosylated, indicating that the enzyme recognizes folding defects at the level of individual domains and only reglucosylates glycans directly attached to a misfolded domain. The result was confirmed with complexes of soybean agglutinin and misfolded thyroglobulin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of RNase B heterodimers.
Figure 2: Characterization of RNase dimers.
Figure 3: Selective recognition of misfolded domains in RNase dimers by GT.
Figure 4: Selective recognition of misfolded proteins in soybean agglutinin–thyroglobulin complexes.

Similar content being viewed by others

References

  1. Hurtley, S.M. & Helenius, A. Annu. Rev. Cell Biol. 5, 277–307 (1989).

    Article  CAS  Google Scholar 

  2. Ellgaard, L., Molinari, M. & Helenius, A. Science 286, 1882– 1888 (1999).

    Article  CAS  Google Scholar 

  3. Trombetta, S.E. & Parodi, A.J. J. Biol. Chem. 267, 9236–9240 ( 1992).

    CAS  PubMed  Google Scholar 

  4. Parker, C.G., Fessler, L.I., Nelson, R.E. & Fessler, J.H. EMBO J. 14, 1294–1303 ( 1995).

    Article  CAS  Google Scholar 

  5. Zapun, A. et al. Cell 88, 29–38 (1997).

    Article  CAS  Google Scholar 

  6. Helenius, A., Trombetta, E.S., Hebert, D.N. & Simons, J.F. Trends Cell Biol. 7, 193–200 (1997).

    Article  CAS  Google Scholar 

  7. Hammond, C., Braakman, I. & Helenius, A. Proc. Natl. Acad. Sci. USA 91, 913–917 (1994).

    Article  CAS  Google Scholar 

  8. Gardner, T.G. & Kearse, K.P. J. Biol. Chem. 274, 14094–14099 (1999).

    Article  CAS  Google Scholar 

  9. Cannon, K.S.l. & Helenius, A. J. Biol. Chem. 274, 7537–7544 (1998).

    Article  Google Scholar 

  10. Sousa, M.C., Ferrero-Garcia, M.A. & Parodi, A.J. Biochemitry 31, 97– 105 (1992).

    Article  CAS  Google Scholar 

  11. Hebert, D.N., Zhang, J.-X., Chen, W., Foellmer, B. & Helenius, A. J. Cell Biol. 139, 613– 623 (1997).

    Article  CAS  Google Scholar 

  12. Parodi, A.J. Biochim. Biophys. Acta. 1426, 287– 295 (1999).

    Article  CAS  Google Scholar 

  13. Sousa, M. & Parodi, A.J. EMBO J 14, 4196–4203 (1995).

    Article  CAS  Google Scholar 

  14. Richards, F.M. & Vithayathil, P.J. J. Biol. Chem. 234, 1459–1465 ( 1959).

    CAS  PubMed  Google Scholar 

  15. Trombetta, S.E. & Helenius, A. J. Cell Biol. in the press (2000).

    Google Scholar 

  16. Kosower, N.S. & Kosower, E.M. Meth. Enzymol. 143 , 264–270 (1987).

    Article  CAS  Google Scholar 

  17. Ruoppolo, M. et al. Fold Des. 1, 381–390 (1996).

    Article  CAS  Google Scholar 

  18. Trombetta, S., Bosch, M. & Parodi, A.J. Biochemistry 28, 8108– 8116 (1989).

    Article  CAS  Google Scholar 

  19. Rudd, P.M. & Dwek, R.A. Crit. Rev. Biochem. Mol. Biol. 32, 1–100 (1997).

    Article  CAS  Google Scholar 

  20. Ashford, D.A., Dwek, R.A., Rademacher, T.W., Lis, H. & Sharon, N. Carbohydr. Res. 213, 215–227 (1991).

    Article  CAS  Google Scholar 

  21. Rawitch, A.B., Pollock, H.G. & Yang, S.X. Arch. Biochem. Biophys. 300, 271–279 (1993).

    Article  CAS  Google Scholar 

  22. Wormald, M.R. & Dwek, R.A. Structure Fold Des. 7 , R155–160 (1999).

    Article  CAS  Google Scholar 

  23. Amara, J.F., Cheng, S.H. & Smith, A.E. Trends Cell Biol. 2, 145– 149 (1992).

    Article  CAS  Google Scholar 

  24. Aridor, M. & Balch, W.E. Nat. Med. 5, 745–751 (1999).

    Article  CAS  Google Scholar 

  25. Allen, H.J. & Johnson, E.A. Carbohydr. Res. 50 , 121–131 (1976).

    Article  CAS  Google Scholar 

  26. Chen, Y.H., Yang, J.T. & Martinez, H.M. Biochemistry 11, 4120– 4131 (1972).

    Article  CAS  Google Scholar 

  27. Schagger, H. & von Jagow, G. Anal. Biochem. 166 , 368–379 (1987).

    Article  CAS  Google Scholar 

  28. Tsurudome, M. et al. J. Biol. Chem. 267, 20225– 20232 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Trombetta for valuable help and for introducing us to the RNase system and L. Ellgaard for providing GT. Funding was provided from the Swiss National Science Foundation. C.R. is a graduate student in the ETHZ biochemistry program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Helenius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, C., Helenius, A. Recognition of local glycoprotein misfolding by the ER folding sensor UDP-glucose:glycoprotein glucosyltransferase. Nat Struct Mol Biol 7, 278–280 (2000). https://doi.org/10.1038/74035

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing