Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A comparison between molecular dynamics and X-ray results for dissociated CO in myoglobin

Abstract

The distribution of carbon monoxide after photodissociation in the myoglobin haem pocket has been investigated using molecular dynamics simulations at 300 K. The results show that both intermediates (one close to the haem iron and one further away) observed in recent low temperature X-ray studies of photodissociated CO have a high probability of occurrence, even at ambient temperatures. The fact that the O of CO is oriented toward the haem iron in the closer intermediate provides an explanation for the slow rate of CO geminate rebinding. A refinement against X-ray data generated from the molecular dynamics simulations indicates that the CO has a broader distribution in the haem pocket than is apparent from the experimental electron density. This effect is likely to be general for systems containing highly mobile groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Antonini, E. & Brunori, M. Haemoglobin and myoglobin in their reactions with ligands. (North-Holland, London, 1971).

    Google Scholar 

  2. Springer, B.A., Sligar, S.G., Olson, J.S. & Phillips, Jr. G.N. Mechanisms of ligand recognition in myoglobin. J. Chem. Rev. 94, 699–714 (1994).

    Article  CAS  Google Scholar 

  3. Collman, J.P., Brauman, J.I., Halbert, T.R. & Suslick, K.S. Nature of O2 and CO binding to metalloporphyrins and haem proteins. Proc. Natl. Acad. Sci. USA 73, 3333–3337 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ansari, A. et al. Rebinding and relaxation in the myoglobin pocket. Biophys. Chem. 26, 337–355 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Elber, R. & Karplus, M. Enhanced sampling in molecular dynamics: Use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin J. Am. Chem. Soc. 112, 9161–9175 (1990).

    Article  CAS  Google Scholar 

  6. Straub, J. & Karplus, M. Molecular dynamics study of the photodissociation of carbon monoxide from myoglobin: ligand dynamics in the first 10 ps. Chem. Phys. 158, 221–248 (1991).

    Article  CAS  Google Scholar 

  7. Gibson, Q.E., Regan, R., Elber, R., Olson, J.S. & Carver, T.E. Distal pocket residues affect picosecond ligand recombination in myoglobin. J. Biol. Chem. 267, 22022–22034 (1992).

    CAS  PubMed  Google Scholar 

  8. Carlson, M.L. et al. Nitric oxide recombination to double mutants of myoglobin:role of ligand diffusion in a fluctuating haem pocket. Biochemistry 33, 10597–10606 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Li, H., Elber, R. & Straub, J.E. Molecular dynamics simulation of NO recombination to myoglobin mutants. J. Biol. Chem. 268, 17908–17916 (1993).

    CAS  PubMed  Google Scholar 

  10. Schlichting, I., Berendzen, J., Phillips, Jr. G.N. & Sweet, R.M. Crystal structure of photolyzed carbonmonoxymyoglobin. Nature 371, 808–812 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Teng, T.-Y., _rajer, V. & Moffat, K. Photolysis-induced structural changes in single crystals of carbonmonoxymyoglobin at 40K. Nature Struct. Biol. 1, 701–705 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Hartmann, H. et al. X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. Proc. Natl. Acad. Sci. USA 93, 7013–7016 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim, M., Jackson, T.A. & Anfinrud, P.A. Binding of CO to myoglobin from a haem pocket docking site to form nearly linear Fe-C-O. Science 269, 962–966 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Lim, M., Jackson, T.A. & Anfinrud, P.A. Mid-infrared vibrational spectrum of CO after photodissociation from haem: Evidence for a ligand docking site in the haem pocket of haemoglobin and myoglobin. J. Chem. Phys. 102, 4355–4366 (1995).

    Article  CAS  Google Scholar 

  15. Petrich, J.W., Poyart, C. & Martin, J.L. Photophysics and reactivity of haem proteins: A femtosecond absorption study of haemoglobin, myoglobin, and protohaem. Biochem. 27, 4049–4060 (1988).

    Article  CAS  Google Scholar 

  16. Anfinrud, P.A., Han, C. & Hochstrasser, R.M. Direct observation of ligand dynamics in haemoglobin by subpicosecond infrared spectroscopy. Proc. Natl. Acad. Sci.USA 86, 8387–8391 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alben, J.O. et al. Infrared spectroscopy of photodissociated carboxymyoglobm at low temperatures. Proc. Natl. Acad. Sci. USA 79, 3744–3748 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuriyan, J., Wilz, S., Karplus, M. & Petsko, G.A. X-ray structure and refinement of carbon-monoxy myoglobin at 1.5 Å resolution. J. Mol. Biol. 192, 133–154 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Teng, T.-Y., Huang, H.W. & Olah, G.A. 5K extended X-ray absorption fine structure and 40 K 10-s resolved extended X-ray absorption fine structurestudies of photolyzed carboxymyoglobin. Biochemistry 26, 8066–8072 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Powers, L. et al. Kinetic, structural, and spectroscopic identification of geminatestates of myoglobin: A ligand binding site on the reaction pathway. Biochemistry 26, 4785–4796 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Alben, J.O. et al. Isotope effect in molecular tunneling. Phys. Rev. Letts. 44, 1157–1160 (1980).

    Article  CAS  Google Scholar 

  22. Jongeward, K.A. et al. Picosecond and nanosecond geminate recombination of myoglobin with CO, O2, NO, and Isocyamides. J. Am. Chem. Soc. 110, 380–387 (1988).

    Article  CAS  Google Scholar 

  23. Kuriyan, J., Petsko, G.A., Levy, R.M. & Karplus, M. Effect of anisotropy and anharmonicity on protein crystallographic refinement. J. Mol. Biol. 190, 227–254 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Ichiye, T. & Karplus, M. Anisotropy and anharmonicity of atomic fluctuations inproteins: implications for X-ray analysis. Biochemistry 27, 3487–3497 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Sassaroli, M. & Rousseau, D.L. Simulation of carboxymyoglobin photodissociation. J. biol. Chem. 261, 16292–16294 (1986).

    CAS  PubMed  Google Scholar 

  26. Hajdu, J. & Andersson, I. Fast Crystallography and time-resolved structures. Annu. Rev. Biopys. Biomol. Struct. 22, 467–497 (1993).

    Article  CAS  Google Scholar 

  27. Bourgeois, D. et al. Single pulse Laue images from macromolecular crystals recorded at ESRF. SPIE 2521, 178–181 (1996).

    Google Scholar 

  28. Levitt, M. & Park, B.H. Water: now you see it, now you do not. Structure 1, 223–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Brooks, B.R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamic calculations. J. Comp. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  30. Petrich, J.W. et al. Ligand binding and protein relaxation in haem proteins: A room temperature analysis of NO geminate recombination. Biochemistry 30, 3975–3987 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. Comparison of simple potential functions for simulating liquid water. J Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  32. Loncharich, R.J. & Brooks, B.R. The effects of truncating long-range forces on protein dynamics. Proteins 6, 32–45 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Van Gunsteren, W.F. & Berendsen, H.J.C. Algorithms for molecular dynamics and constraint dynamics. Mol. Phys. 34, 1311–1327 (1977).

    Article  CAS  Google Scholar 

  34. Brünger, A.T. & Karplus, M. Polar hydrogen in proteins:empirical energyplacement and neutron diffraction comparison. Proteins 4, 148–156 (1988).

    Article  PubMed  Google Scholar 

  35. Steinbach, P.J. & Brooks, B.R. Protein hydration elucidated by molecular dynamics simulation. Proc. Natl. Acad. Sci. USA 90, 9135–9139 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallograpic R factor refinement by molecular dynamics. Science 235, 458–460 (1987)

    Article  PubMed  Google Scholar 

  37. Srajer, V. et al. Monoxide of myoglobin: nanosecond time-resolved crystallography. Science 274, 1726–1729 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitkup, D., Petsko, G. & Karplus, M. A comparison between molecular dynamics and X-ray results for dissociated CO in myoglobin. Nat Struct Mol Biol 4, 202–208 (1997). https://doi.org/10.1038/nsb0397-202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0397-202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing