Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel fold and capsid-binding properties of the λ-phage display platform protein gpD

Abstract

The crystal structure of gpD, the capsid-stabilizing protein of bacteriophage λ, was solved at 1.1 Å resolution. Data were obtained from twinned crystals in space group P21 and refined with anisotropic temperature factors to an R-factor of 0.098 (Rfree = 0.132). GpD (109 residues) has a novel fold with an unusually low content of regular secondary structure. Noncrystallographic trimers with substantial intersubunit interfaces were observed. The C-termini are well ordered and located on one side of the trimer, relatively far from its three-fold axis. The N-termini are disordered up to Ser 15, which is close to the three-fold axis and on the same side as the C-termini. A density map of the icosahedral viral capsid at 15 Å resolution, obtained by cryo-electron microscopy and image reconstruction, reveals gpD trimers, seemingly indistinguishable from the ones seen in the crystals, at all three-fold sites. The map further reveals that the side of the trimer that binds to the capsid is the side on which both termini reside. Despite this orientation of the gpD trimer, fusion proteins connected by linker peptides to either terminus bind to the capsid, allowing protein and peptide display.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron density maps for gpD.
Figure 2: Stereo view of the structure of the gpD monomer.
Figure 3: Primary and secondary structures of gpD.
Figure 4: Stereo view of the gpD trimer viewed from the bottom side.
Figure 5: The molecular surface of the gpD trimer.
Figure 6: Electron micrographs of phage λ capsids.
Figure 7: Modeling of the crystal structure of the gpD trimer (red) into the portion of the cryo-EM density map (blue) that represents the gpD trimer at the three-fold axis of symmetry.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hendrix, R.W., Roberts, J.W., Stahl, F.W. & Weisberg, R.A. Lambda II. (Cold Spring Harbor Laboratories, Cold Spring Harbor, New York; 1983).

    Google Scholar 

  2. Campbell, A.M. Bacteriophages. In Escherichia coli and Salmonella: cellular and molecular biology. (ed. Neidhardt, F.C.) 2325–2338 (ASM Press, Washington, DC; 1996).

    Google Scholar 

  3. Lederberg, E.M. Lysogenicity in E. coli K12. Genetics 36, 560–560 (1951).

    Google Scholar 

  4. Ptashne, M. A genetic switch: phage lambda and higher organisms. (Blackwell Science Ltd, Boston; 1992).

    Google Scholar 

  5. Hendrix, R.W. & Garcea, R.L. Capsid assembly of dsDNA viruses. Semin. Virology 5, 15–26 (1994).

    Article  CAS  Google Scholar 

  6. Young, R.A. & Davis, R.W. Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA 80, 1194–1198 (1983).

    Article  CAS  Google Scholar 

  7. Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F. & Petersen, G.B. Nucleotide sequence of bacteriophage lambda DNA. J. Mol. Biol. 162, 729–773 (1982).

    Article  CAS  Google Scholar 

  8. Santini, C. et al. Efficient display of an HCV cDNA expression library as C-terminal fusion to the capsid protein D of bacteriophage lambda. J. Mol. Biol. 282, 125–135 (1998).

    Article  CAS  Google Scholar 

  9. Mikawa, Y.G., Maruyama, I.N. & Brenner, S. Surface display of proteins on bacteriophage lambda heads. J. Mol. Biol. 262, 21–30 (1996).

    Article  CAS  Google Scholar 

  10. Sternberg, N. & Hoess, R.H. Display of peptides and proteins on the surface of bacteriophage lambda. Proc. Natl. Acad. Sci. USA 92, 1609–1613 (1995).

    Article  CAS  Google Scholar 

  11. Dokland, T. & Murialdo, H. Structural transitions during maturation of bacteriophage lambda capsids. J. Mol. Biol. 233, 682–694 (1993).

    Article  CAS  Google Scholar 

  12. Georgopoulos, C., Tilly, K. & Casjens, S.R. Lambdoid phage head assembly. In Lambda II. (eds Hendrix, R.W., Roberts, J.W., Stahl, F.W. & Weisberg, R.A.) 279–304 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; 1983).

    Google Scholar 

  13. Kocsis, E., Greenstone, H.L., Locke, E.G., Kessel, M. & Steven, A.C. Multiple conformational states of the bacteriophage T4 capsid surface lattice induced when expansion occurs without prior cleavage. J. Struct. Biol. 118, 73–82 (1997).

    Article  CAS  Google Scholar 

  14. Duda, R.L., Martincic, K., Xie, Z. & Hendrix, R.W. Bacteriophage HK97 head assembly. FEMS Microbiol. Rev. 17, 41–46 (1995).

    Article  CAS  Google Scholar 

  15. Forrer, P. & Jaussi, R. High-level expression of soluble heterologous proteins in the cytoplasm of Escherichia coli by fusion to the bacteriophage lambda head protein D. Gene 224, 45–52 (1998).

    Article  CAS  Google Scholar 

  16. Wurtz, M., Kistler, J. & Hohn, T. Surface structure of in vitro assembled bacteriophage lambda polyheads. J. Mol. Biol. 101, 39–56 (1976).

    Article  CAS  Google Scholar 

  17. Imber, R., Tsugita, A., Wurtz, M. & Hohn, T. Outer surface protein of bacteriophage lambda. J. Mol. Biol. 139, 277–295 (1980).

    Article  CAS  Google Scholar 

  18. Sternberg, N. & Weisberg, R. Packaging of coliphage lambda DNA. II. The role of the gene D protein. J. Mol. Biol. 117, 733–759 (1977).

    Article  CAS  Google Scholar 

  19. Carson, M. RIBBONS 4.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  20. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  21. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  22. Smith, M.P. & Feiss, M. Sequence analysis of the phage 21 genes for prohead assembly and head completion. Gene 126, 1–7 (1993).

    Article  CAS  Google Scholar 

  23. Cue, D. & Feiss, M. A site required for termination of packaging of the phage lambda chromosome. Proc. Natl. Acad. Sci. USA 90, 9290–9294 (1993).

    Article  CAS  Google Scholar 

  24. Wider, G. & Wüthrich, K. NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr. Opin. Struct. Biol. 9, 594–601 (1999).

    Article  CAS  Google Scholar 

  25. Ishii, T. & Yanagida, M. The two dispensable structural proteins (soc and hoc) of the T4 phage capsid; their purification and properties, isolation and characterization of the defective mutants, and their binding with the defective heads in vitro. J. Mol. Biol. 109, 487–514 (1977).

    Article  CAS  Google Scholar 

  26. Tatman, J.D., Preston, V.G., Nicholson, P., Elliott, R.M. & Rixon, F.J. Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J. Gen. Virol. 75, 1101–1113 (1994).

    Article  CAS  Google Scholar 

  27. Thomsen, D.R., Roof, L.L. & Homa, F.L. Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. J. Virol. 68, 2442–2457 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Aebi, U. et al. Capsid fine structure of T-even bacteriophages. Binding and localization of two dispensable capsid proteins into the P23* surface lattice. J. Mol. Biol. 110, 687–698 (1977).

    Article  CAS  Google Scholar 

  29. Newcomb, W.W. et al. Isolation of herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. J. Virol. 74, 1663–1673 (1999).

    Article  Google Scholar 

  30. Booy, F.P. et al. Finding a needle in a haystack: detection of a small protein (the 12 kDa VP26) in a large complex (the 200 MDa capsid of herpes simplex virus). Proc. Natl. Acad. Sci. USA. 91, 5652–5656 (1994).

    Article  CAS  Google Scholar 

  31. Zhou, Z.H., He, J., Jakana, J., Tatman, J.D., Rixon, F.J. & Chiu, W. Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nature Struct. Biol. 2, 1026–1030 (1995).

    Article  CAS  Google Scholar 

  32. Wingfield, P.T. et al. Hexon-only binding of VP26 reflects differences between the hexon and penton conformations of VP5, the major capsid protein of herpes simplex virus. J. Virol. 71, 8955–8961 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren, Z.J. et al. Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. Protein Sci. 5, 1833–1843 (1996).

    Article  CAS  Google Scholar 

  34. Jiang, J., Abu-Shilbayeh, L. & Rao, V.B. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. Infect. Immun. 65, 4770–4777 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Desai, P. & Person, S. Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J. Virol. 72, 7563–7568 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Feiss, M., Fisher, R.A., Siegele, D.A., Nichols, B.P. & Donelson, J.E. Packaging of the bacteriophage lambda chromosome: a role for base sequences outside cos. Virology 92, 56–67 (1979).

    Article  CAS  Google Scholar 

  37. Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A. Expression antibodies in Escherichia coli. In Antibody engineering. (ed. Borrebaeck, C.A.) 229–266 (Oxford University Press, Oxford, United Kingdom; 1995).

    Google Scholar 

  38. Studier, F.W. & Moffatt, B.A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  39. Qoronfleh, M.W. et al. Production of selenomethionine-labeled recombinant human neutrophil collagenase in Escherichia coli. J. Biotechnol. 39, 119–128 (1995).

    Article  CAS  Google Scholar 

  40. Doublie, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997).

    Article  CAS  Google Scholar 

  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  42. Sheldrick, G.M. Patterson superposition and ab initio phasing. Methods Enzymol. 276, 628–641 (1997).

    Article  CAS  Google Scholar 

  43. Terwilliger, T.C. & Berendzen, J. Correlated phasing of multiple isomorphous replacement data. Acta Crystallogr. D 52, 749–757 (1996).

    Article  CAS  Google Scholar 

  44. Hendrickson, W.A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  CAS  Google Scholar 

  45. Collaborative Computational Project, Number 4. CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  46. Jones, T.A. & Kieldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  47. Brünger, A.T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  48. Sheldrick, G.M. & Schneider, T.R. SHELXL: high-resolution refinement. Methods Enzymol. 277, 319–343 (1997).

    Article  CAS  Google Scholar 

  49. Navaza, J. An automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  50. Zlotnick, A. et al. Dimorphism of hepatitis B virus capsids is strongly influenced by the C- terminus of the capsid protein. Biochemistry 35, 7412–7421 (1996).

    Article  CAS  Google Scholar 

  51. Conway, J.F. & Steven, A.C. Methods for reconstructing density maps of "single particles" from cryoelectron micrographs to subnanometer resolution. J. Struct. Biol. 128, 106–118 (1999).

    Article  CAS  Google Scholar 

  52. Fuller, S.D., Butcher, S.J., Cheng, R.H. & Baker, T.S. Three-dimensional reconstruction of icosahedral particles-the uncommon line. J. Struct. Biol. 116, 48–55 (1996).

    Article  CAS  Google Scholar 

  53. Baker, T.S. & Cheng, R.H. A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol. 116, 120–130 (1996).

    Article  CAS  Google Scholar 

  54. Conway, J.F., Duda, R.L., Cheng, N., Hendrix, R.W. & Steven, A.C. Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. J. Mol. Biol. 253, 86–99 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Hawkins for assistance with the capsid preparations, H. Iwai and O. Zerbe for performing the NMR experiments and for stimulating discussions, M. Feiss, R. Weisberg, D. Belnap, and R. Hendrix for helpful suggestions, M. Feiss and R. Hoess for supplying material, and A. Arthur for editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Plückthun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Forrer, P., Dauter, Z. et al. Novel fold and capsid-binding properties of the λ-phage display platform protein gpD. Nat Struct Mol Biol 7, 230–237 (2000). https://doi.org/10.1038/73347

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing