Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

What do dysfunctional serpins tell us about molecular mobility and disease?

Abstract

Proteinase inhibitors of the serpin family have a unique ability to regulate their activity by changing the conformation of their reactive-centre loop. Although this may explain their evolutionary success, the dependence of function on structural mobility makes the serpins vulnerable to the effects of mutations. Here, we describe how studies of dysfunctional variants, together with crystal structures of serpins in different forms, provide insights into the molecular functions and remarkable folding properties of this family. In particular, comparisons of variants affecting different serpins allow us to define the domains which control this folding and show how spontaneous but inappropriate changes in conformation cause diverse diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Travis, J. & Salvesen G S. Human plasma proteinase inhibitors. A. Rev. Biochem. 52: 655–709.

    CAS  PubMed  Google Scholar 

  2. Carrell, R.W. & Boswell, D.R. Serpins: the superfamily of plasma serine proteinase inhibitors. In Proteinase Inhibitors (Eds Barrett, A. & Salvesen, G.), 403–419, (Elsevier Biomedical Press, Amsterdam; (1986).

    Google Scholar 

  3. Huber, R. & Carrell, R.W. Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins. Biochemistry 28 8951–8966.

  4. Schulze, A.J., Huber, R., Bode, W. & Engh, R.A. Structural aspects of serpin inhibition. FEBS Letts. 344 117–124. (1994).

    CAS  Google Scholar 

  5. Potempa, J., Korzus, E. & Travis, J. The serpin family of proteinase inhibitors: structure function and regulation. J. biol. Chem. 269, 15957–15960.

  6. Loebermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. Human α1-proteinase inhibitor: crystal structure analysis of two crystal modifications, molecular model, and preliminary analysis of the implications for function. J. molec. Biol. 177, 531–556 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Stein, P. & Chothia, C. Serpin tertiary structure transformation. J. molec. Biol. 221, 615–621 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Wright, H.T., Qian, H. X. & Huber, R. Crystal structure of plakalbumin, a proteolytically nicked form of ovalbumin. Its relationship to the structure of cleaved α1-proteinase inhibitor. J. molec. Biol. 213, 513–528 (1990).

    CAS  PubMed  Google Scholar 

  9. Stein, P.E. et al. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347, 99–102 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Wei, A., Rubin, H., Cooperman, B.S. & Christianson, D.W. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop. Nature struct. Biol. 1, 251–258 (1994).

    CAS  PubMed  Google Scholar 

  11. Perry, D.J. et al. Antithrombin Cambridge II, 384 Ala to Ser. Further evidence of the role of the reactive centre loop in the inhibitory function of the serpins. FEBS Letts. 285, 248–250 (1991).

    CAS  Google Scholar 

  12. Skriver, K. et al. Substrate properties of the C1 inhibitor Ma (alanine 434 → glutamic acid). J. biol. Chem. 266, 9216–9221 (1991).

    CAS  PubMed  Google Scholar 

  13. Mast, A.E., Enghild, J.J., Pizzo, S.V. & Salvesen, G. Analysis of the plasma elimination kinetics and conformational stabilities of native, proteinase-complexed, and reactive site cleaved serpins: comparison of α1-proteinase inhibitor, α1-antichymotrypsin, antithrombin III, α2-antiplasmin, angiotensinogen and ovalbumin. Biochemistry 30, 1723–1730 (1991).

    CAS  PubMed  Google Scholar 

  14. Schulze, A.J. et al. Structural transition of α1-antitrypsin by a peptide sequentially similar to β-strand s4A. E. J. Biochem. 194, 51–56 (1990).

    CAS  Google Scholar 

  15. Carrell, R.W., Evans, D.L. & Stein, P.E. Mobile reactive centre of serpins and the control of thrombosis. Nature 353, 576–578 (1991).

    CAS  PubMed  Google Scholar 

  16. Schreuder, H.A. et al. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature struct. Biol. 1, 48–54 (1994).

    CAS  PubMed  Google Scholar 

  17. Carrell, R.W., Stein, P.E., Fermi, G. & Wardell, M.R. Biological implications of a 3 Å structure of dimeric antithrombin. Structure 2, 257–270 (1994).

    CAS  PubMed  Google Scholar 

  18. Björk, I, Nordling, K & Olson, S.T. Immunological evidence for insertion of the reactive-bond loop of antithrombin into the A beta-sheet of the inhibitor during trapping of target proteinases. Biochemistry 32, 6501–6505 (1993).

    PubMed  Google Scholar 

  19. Eldering, E., Verpy, E., Roem, D., Meo, T. and Tosi, M. C-terminal substitutions in the serpin C1-inhibitor that cause loop overinsertion and subsequent multimerization. J biol Chem. In the press. (1995).

    Google Scholar 

  20. Chang, W.-S.W., Whisstock, J., Carrell, R.W. & Wardell, M.R. The mechanism of antithrombin polyerization; a pathological process. Blood 84 (Suppl. 1) 391a (1994).

    Google Scholar 

  21. Mast, A.E., Enghild, J.J. & Sawesen, G. Conformation of the reactive site loop at α1-proteinase inhibitor probed by limited proteolysis. Biochemistry 31 2720–2728 (1992).

    CAS  PubMed  Google Scholar 

  22. Mottonen, J. et al. Structural basis for latency in plasminogen activator inhibitor-1. Nature 355, 270–273 (1992).

    CAS  PubMed  Google Scholar 

  23. Lomas, D.A., Evans, D.Ll., Finch, J.T. & Carrell, R.W. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 357, 605–607 (1992).

    CAS  PubMed  Google Scholar 

  24. Devraj-Kizuk, R. et al. Antithrombin Ill-Hamilton: a gene with a point mutation (guanine to adenine) in codon 382 causing impaired serine protease activity. Blood 72, 1518–1523 (1988).

    CAS  PubMed  Google Scholar 

  25. Perry, D.J., Harper, P.L., Fairham, S., Daly, M. & Carrell, R.W., Antithrombin Cambridge, 384 Ala to Pro: a new variant identified using the polymerase chain reaction. FEBS Letts 254, 174–176 (1989).

    CAS  Google Scholar 

  26. Siddique, Z.M., McPhaden, A.R. & Whaley, K. Identification of type II hereditary angio-oedema (HAE) mutations. Clin. exp. Immunol. 86, 11 (1991).

    Google Scholar 

  27. Levy, N.L., Ramesh, N., Cicardi, M., Harrison, R.A. & Davis, A.E. Type II hereditary angioneurotic edema that may result from a single nucleotide change in the codon for alanine-436 in the C1 inhibitor gene. Proc. natn. Acad. Sci. U.S.A. 87, 265–268 (1990).

    CAS  Google Scholar 

  28. Aulak, K.S. et al. A hinge region mutation in C1-inhibitor (Ala436 → Thr) results in non-substrate-like behaviour and in polymerisation of the molecule. J. biol. Chem. 268, 18088–18094 (1993).

    CAS  PubMed  Google Scholar 

  29. Davis, A.E. et al. C1 inhibitor hinge region mutations produce dysfunction by different mechanisms. Nature genet. 1, 354–358 (1992).

    CAS  PubMed  Google Scholar 

  30. Hopkins, P.C.R., Carrell, R.W. & Stone, S.R. Effects of mutations in the hinge region of serpins. Biochemistry 32, 7650–7657.

    CAS  PubMed  Google Scholar 

  31. Hood, D.B., Huntington, J.A. & Gettins, P.G.W. Alpha(1) proteinase inhibitor variant T345R influence of P14 residue on substrate and inhibitory pathways. Biochemistry 33, 8538–8547 (1994).

    CAS  PubMed  Google Scholar 

  32. Lawrence, D.A., Olson, S.T., Palaniappan, S. & Ginsburg, D. Serpin reactive-centre loop mobility is required for inhibitor function but not for enzyme recognition. J.biol.Chem. In the press.

  33. Verpy, E. et al. Crucial residues in the carboxy-terminal end of C1-inhibitor revealed by pathogenic mutants impaired in secretion or function. J.clin.Invest. In the press.

  34. Dawes, J., James, K. & Lane, D.A. Conformational change in antithrombin induced by heparin, probed with a monoclonal antibody against the 1C/4B region. Biochemistry 33, 4375–4383 (1994).

    CAS  PubMed  Google Scholar 

  35. Tucker, H.M., Mottonen, J., Goldsmith, E.J. & Gerard, R.D. The structural basis of latency in PAI-1. Fibrinolysis 8, 17, Abs. 47 (1994).

    Google Scholar 

  36. Lane, D.A. et al. Pleiotropic effects of antithrombin strand s1C substitution mutations. J clin. Invest. 90, 2422–2433 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Laurell, C.-B. & Eriksson, S. The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency Scand. J. clin. lab. Invest. 15, 132–140 (1963).

    CAS  Google Scholar 

  38. Jeppsson, J.-O. Amino-acid substitution Glu → Lys in a1-antitrypsin Piz. FEBS Letts 65, 195–197 (1976).

    CAS  Google Scholar 

  39. Bruce, D., Perry, D.J., Borg, J.-Y., Carrell, R.W. & Wardell, M.R. A thermolabile antithrombin variant associated with thromboembolic disease: Rouen-VI (187Asn->Asp). J. clin. Invest. 94, 2265–2274 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Madison, E.L. Studies of serpins unfold at a feverish pace. J. clin. Invest. 94, 2174–2175. (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lomas, D.A., Finch, J.T., Seyama, K., Nukiwa, T. & Carrell, R.W. a1-antitrypsin Siiyama (Ser53 → Phe). Further evidence for intracellular loop-sheet polymerisation. J. biol. Chem. 268, 15333–15335 (1993).

    CAS  PubMed  Google Scholar 

  42. Graham, A. et al. Molecular characterisation of three alpha-1-antitrypsin deficiency variants: proteinase inhibitor (Pi) nullcardiff (Asp256 → Val); Pi Mmmalton (Phe51 → deletion) and Pi I (Arg39 → Cys). Hum. Genet. 84, 55–58 (1989).

    CAS  PubMed  Google Scholar 

  43. Frazier, G.C., Harrold, T.R., Hofker, M.H. & Cox, D.W. In-frame single codon deletion in the Mmalton deficiency allele of α1-antitrypsin. Am. J. hum. Genet. 44, 894–902 (1989).

    Google Scholar 

  44. Seyama, K. et al. Siiyama (Serine 53 (TCC) to phenylalanine 53 (TCC)). J. biol. Chem. 266, 12627–12632 (1991).

    CAS  PubMed  Google Scholar 

  45. Kwon, K.S., Kim, J., Shin, H.S. & Yu, M.H. Single amino acid substitutions of α1-antitrypsin that confer enhancement in thermal stability. J. biol. Chem. 269 1–5.

  46. Lomas, D.A. et al. Effect of the Z mutation on the physical and inhibitory properties of α1-antitrypsin. Biochemistry 32, 500–508 (1993).

    CAS  PubMed  Google Scholar 

  47. Le, A., Graham, K.S. & Sifers, R.N. Intracellular degradation of the transport impaired human P1Z α1-antitrypsin variant. J.biol.Chem. 265 14001–14007 (1990).

    CAS  PubMed  Google Scholar 

  48. Davis, A.E., Bissler, J.J. & Cicardi, M. Mutations in the C1 inhibitor gene that result in hereditary angioneurotic edema. Behring Inst. Mitt. 93, 313–320 (1993).

    CAS  Google Scholar 

  49. Erdjument, H., Lane, D.A., Panico, M., Di Marzo, V. & Morris, H.R. Single amino acid substitution in the reactive site of antithrombin leading to thrombosis. J. biol. Chem. 263, 5589–5593 (1988).

    CAS  PubMed  Google Scholar 

  50. Lane, D.A. et al. A novel amino acid substitution in the reactive site of a congenital variant antithrombin. J. biol. Chem. 264, 10200–10204 (1989).

    CAS  PubMed  Google Scholar 

  51. Owen, M.C., Brennan, S.O., Lewis, J.H. & Carrell, R.W. Mutation of antitrypsin to antithrombin. New Engl. J. Med. 309, 694–698 (1983).

    CAS  PubMed  Google Scholar 

  52. Olson, S.T. & Björk, I. Regulation of thrombin by antithrombin and heparin cofactor II. In: Thrombin Structure and Function. ( L.J., Berliner, ed). 159–217 (Plenum Press, New York; (1992).

    Google Scholar 

  53. Björk, I., Ylinenjârvi, K., Olson, S.T. and Bock, P.E. Conversion of antithrombin from an inhibitor of thrombin to a substrate with reduced heparin affinity and enhanced conformational stability by binding of a tetradecapeptide corresponding to the P1 to P14 region of the putative reactive bond loop of the inhibitor. J. biol Chem. 267 1976–1982 (1992).

    PubMed  Google Scholar 

  54. Borg, J.-Y. et al. Antithrombin Rouen-IV 24 Arg → Cys. The amino-terminal contribution to heparin binding. FEBS Letts 266, 163–166 (1990).

    CAS  Google Scholar 

  55. Koide, T., Odani, S., Takahashi, K., Ono, T. & Sakuragawa, N. Antithrombin III Toyama: replacement of arginine-47 by cysteine in hereditary abnormal antithrombin III that lacks heparin-binding ability. Proc. natn. Acad. Sci. U.S.A. 81, 289–293 (1984).

    CAS  Google Scholar 

  56. Owen, M.C. et al. Heparin binding defect in a new antithrombin III variant: Rouen, 47 Arg to His. Blood 69, 1275–1279 (1987).

    CAS  PubMed  Google Scholar 

  57. Borg, J.-Y. et al. Arginine 47 is a prime heparin binding site in antithrombin. A new variant Rouen II, 47 Arg to Ser. J. clin. Invest. 81, 1292–1296 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gandrille, S. et al. Important role of Arginine 129 in heparin-binding site of antithrombin III. J. biol. Chem. 265, 18997–19001 (1990).

    CAS  PubMed  Google Scholar 

  59. Chang, J. & Tran, T. Antithrombin III Basel. Identification of a Pro-Leu substitution in a hereditary abnormal antithrombin with impaired heparin cofactor activity. J. biol. Chem. 261, 1174–1176 (1986).

    CAS  PubMed  Google Scholar 

  60. Olds, R.J. et al. Antithrombin Budapest 3: an antithrombin variant with reduced heparin affinity resulting from the substitution L99F. FEBS Letts 300, 241–246 (1992).

    CAS  Google Scholar 

  61. Chowdhury, V. et al. Two novel antithrombin variants (L99V and Q118P) which alter the heparin binding domain. Nouvelle Revue Française d'Hématologie 36, 268 (1994).

    Google Scholar 

  62. Okajima, K. et al. Antithrombin III Nagasaki (Seri 16-Pro): a heterozygous variant with defective heparin binding associated with thrombosis. Blood 81, 1300–1305 (1993).

    CAS  PubMed  Google Scholar 

  63. Brennan, S.O. et al. New carbohydrate site in mutant antithrombin (7lle-Asn) with decreased heparin affinity. FEBS Letts 237, 118–122 (1988).

    CAS  Google Scholar 

  64. Blinder, M.A., Andersson, T.R., Abildgaard, U. & Tollefsen, D.M. Heparin cofactor IIoslo: mutation of Arg 189 to His decreases the affinity for dermatan sulfate. J. biol. Chem. 264, 5128–5133 (1989).

    CAS  PubMed  Google Scholar 

  65. Owen, M.C., Beresford, C.H. & Carrell, R.W., Antithrombuin Glasgow 393 Arg to His: a P1 reactive site variant with increased heparin affinity but no thrombin inhibitory activity. FEBS Lett. 231, 317–320 (1988).

    CAS  PubMed  Google Scholar 

  66. Van Boeckel, C.A.A., Grootenhuis, P.D.J. & Visser, A. A mechanism for heparin-induced potentiation of antithrombin III. Nature struct. Biol. 1, 423–425 (1994).

    CAS  PubMed  Google Scholar 

  67. Owen, M.C. & Carrell, R.W. Alpha-1-antitrypsin: molecular abnormality of S variant. Brit. med. J. 1, 130–131 (1976).

    Google Scholar 

  68. Takahashi, H. et al. Identification and molecular analysis of a new variant of α1-antitrypsin characterised by marked reduction of serum levels. Am. Rev. resp. Dis. 135, A292 (1987).

    Google Scholar 

  69. Takahashi, H. et al. Characterisation of the gene and protein of the α1-antitrypsin ‘deficiency’ allele Mprocida . J. biol. Chem. 263, 15528–25534 (1988).

    CAS  PubMed  Google Scholar 

  70. Poller, W. et al. A leucine-to-proline substitution causes a defective α1 antichymotrypsin allele associated with familial obstructive lung disease. Genomics 17, 740–743 (1993).

    CAS  PubMed  Google Scholar 

  71. Kramps, J.A., Brouwers, J.W., Maesen, F. & Dijkman, J.H. PiMheerlen, a PiM allele resulting in very low α1-antitrypsin serum levels. Hum. Genet. 59, 104–107 (1981).

    CAS  PubMed  Google Scholar 

  72. Hofker, M.H. et al. A Pro → Leu substitution in codon 369 in the alpha-1-antitrypsin deficiency variant PIM-Heerlen. Am. J. hum. Genet. 41, A220 (1987).

  73. Olds, R.J., Lane, D.A. & Caso, R. Antithrombin III Budapest: a single amino acid substitution (429 Pro to Leu) in a region highly conserved in the serpin family. Blood 79, 1206–1212 (1992).

    CAS  PubMed  Google Scholar 

  74. Curiel, D.T., Vogelmeier, C., Hubbard, R.C., Stier, L.E. & Crystal, R.G. Molecular basis of α1-antitrypsin deficiency and emphysema associated with the α1-antitrypsin Mmineral springs allele. Molec. cell. Biol. 10, 47–56 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Frazier, G.C., Siewertsen, M.A., Hofker, M.H., Brubacher, M.G. & Cox, D.W. Identification of a new α1-antitrypsin null allele, PI*QOIudwigshafen. Am. J. hum. Genet. 45, Abstract 729 (1989).

  76. Holmes, M.D., Brantly, M.L., Fells, G.A. & Crystal, R.G. α-1-Antitrypsin Wbethesda: molecular basis of an unusual α1-antitrypsin deficiency variant. Biochem. biophys. Res. Commun. 170, 1013–1020 (1990).

    CAS  PubMed  Google Scholar 

  77. Parad, R.B., Kramer, J., Strunk, R.C., Rosen, F.S. & Davis, A.E. Dysfunctional C1 inhibitor Ta: deletion of Lys-251 results in aquisition of an N-glycosylation site. Proc. natn. Acad. Sci. U.S.A. 87, 6786–6790 (1990).

    CAS  Google Scholar 

  78. Curiel, D., Brantly, M., Curiel, E., Stier, L. & Crystal, R. α1-Antitrypsin deficiency caused by α1 -antitrypsin Null mattawa: an insertion mutation rendering the α1-antitrypsin gene incapable of producing a1 -antitrypsin. Am. Rev. resp. Dis. 137, 210 (1988).

    Google Scholar 

  79. Nukiwa, T., Takahashi, H., Brantly, M., Courtney, M. & Crystal, R.G. α1-Antitrypsin NullGranite Falls, a non-expressing α1-antitrypsin gene associated with a frameshift to stop mutation in a coding exon. J. biol. Chem. 262, 11999–12004 (1987).

    CAS  PubMed  Google Scholar 

  80. Sifers, R.N., Brashears-Macatee, S., Kidd, V.J., Muensch, H. & Woo, S.L.C. A frameshift mutation results in a truncated α1-antitrypsin that is retained within the rough endoplasmic reticulum. J. biol. Chem. 263, 7330–7335 (1988).

    CAS  PubMed  Google Scholar 

  81. Crystal, R.G. α1-Antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J. clin. Invest. 85, 1343–1352 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Olds, R.J., Lane, D.A. & Ireland, H. Novel point mutations leading to type I antithrombin deficiency and thrombosis. Br. J. Haematol. 78, 408–413 (1991).

    CAS  PubMed  Google Scholar 

  83. Satoh, K. et al. Emphysema associated with complete absence of α1-antitrypsin of a stop codon in an α1-antitrypsin-coding gene. Am. J. Hum. Genet. 42, 77–83 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jeunemaitre, X. et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 71, 169–180 (1992).

    CAS  PubMed  Google Scholar 

  85. Ward, K. et al. A molecular variant of angiotensinogen associated with preeclampsia. Nature genet. 4, 59–61 (1993).

    CAS  PubMed  Google Scholar 

  86. Jarvis, J.A., Munro, S.L.A. & Craik, D.J. The thyroid hormone binding site of thyroxine binding globulin. Prot. Engng. 5, 61–67 (1992).

    CAS  Google Scholar 

  87. Terry, C.J. & Blake, C.C.F. Comparison of the modelled thyroxine binding site in TBG with the experimentally determined site in transthyretin. Prot. Engng. 5, 505–510 (1992).

    CAS  Google Scholar 

  88. Takeda, K. et al. Sequence of the variant thyroxine-binding globulin of Australian aborigines. J. clin. Invest. 83, 1344–1348 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Murata, Y., Takamatsu, J. & Refetoff, S. Inherited abnormality of thyroxine binding globulin with no demonstrable thyroxine binding activity and high serum levels of denatured thyroxine binding globulin. New Engl. J. Med. 314, 694–699 (1986).

    CAS  PubMed  Google Scholar 

  90. Van Baelen, H., Brepoels, R. & De Moor, P., Transcortin Leuven: a variant of human corticosteroid-binding-globulin with decreased cortisol-binding affinity. J. biol. Chem. 257, 3393–3400 (1982).

    Google Scholar 

  91. Smith, C.L., Power, S.G.A. & Hammond, G.L. A Leu → His substitution at residue 93 in human corticosteroid binding globulin results in reduced affinity for cortisol. J. steroid Biochem. 42, 671–676 (1993).

    Google Scholar 

  92. Van Baelen, H., Power, S.G.A. & Hammond, G.L. Decreased cortisol-binding affinity of transcortin Leuven is associated with an amino acid substitution at residue-93. Steroids 58, 275–277 (1993).

    CAS  PubMed  Google Scholar 

  93. Daly, M. et al. Antithrombin Dublin (-3Val → Glu): an N-terminal variant which has an aberrant signal peptidase cleavage site. FEBS Letts 273, 87–90 (1990).

    CAS  Google Scholar 

  94. Graham, A., Kalsheker, N.A., Bamforth, F.J., Newton, C.R. & Markham, A.F. Molecular characterisation of two alpha-1 -antitrypsin deficiency variants: proteinase inhibitor (Pi) NullNewport (Gly115 → Ser) and (Pi) Z Wrexham (Ser−19 → Leu). Hum. Genet. 85, 537–540 (1990).

    CAS  PubMed  Google Scholar 

  95. Chowdhury et al. Identification of nine novel mutations in type I antithrombin deficiency by heteroduplex screening. Brit. J. Haematol. 84, 656–661 (1993).

    CAS  Google Scholar 

  96. Lane, D.A. et al. Antithrombin III mutation database: first update. Thromb. Haemost. 70, 361–369 (1993).

    CAS  PubMed  Google Scholar 

  97. Van Boven, H.H. et al. Molecular basis and mortality in Dutch type 1 antithrombin deficiency families. Nouvelle Revue Française d'Hématologie 36, 277–278 (1994).

    Google Scholar 

  98. Matsunaga, E. et al. Molecular analysis of the gene of the α1-antitrypsin deficiency variant, Mnichinan. Am. J. hum. Genet. 46, 602–612 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Millar, D.S. et al. Three novel missense mutations in the antithrombin III (AT3) gene causing recurrent venous thrombosis. Hum. Genet. 94, 509–512.

  100. Faber, J.-P. et al. The molecularbasisof α1-antichymotrypsin deficiency in a heterozygote with liver and lung disease. J. Hepatology 18, 313–321 (1993).

    CAS  Google Scholar 

  101. Holmes, M.D., Brantly, M.L. & Crystal, R.G. Molecular analysis of the heterogeneity among the P-family of alpha-1 -antitrypsin alleles. Am. Rev. resp. Dis. 142, 1185–1192 (1990).

    CAS  PubMed  Google Scholar 

  102. Grundy, C.B., Holding, S., Millar, D.S., Kakkar, V.V. & Cooper, D.N. A novel missense mutation in the antithrombin III gene (Ser 349 to Pro) causing recurrent venous thrombosis. Hum. Genet. 88, 707–708 (1992).

    CAS  PubMed  Google Scholar 

  103. Holmes, W.E. et al. α2-Antiplasmin Enschede: alanine insertion and abolition of plasmin inhibitory activity. Science 238, 209–211 (1987).

    CAS  PubMed  Google Scholar 

  104. White, D., Abraham, G., Carter, C., Kakkar, V.V. & Cooper, D.N. A novel missense mutation in the antithrombin III gene (Ala 387 to Val) causing recurrent venous thrombosis. Hum. Genet. 90, 472–473 (1992).

    CAS  PubMed  Google Scholar 

  105. Blajchman, M.A., Austin, R.C., Fernandez, R.F. & Sheffield, W.P. Molecular basis of inherited human antithrombin deficiency. Blood 80, 2159–2171 (1992).

    CAS  PubMed  Google Scholar 

  106. Aulak, K.S. et al. Dysfunctional C1-inhibitor (At), isolated from a type II hereditary-angio-oedema plasma, contains a P1 ‘reactive centre’ (Arg444 → His) mutation. Biochem. J. 253, 615–618 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Skriver, K., Radziejewska, E., Silberman, J.A., Donaldson, V.H. & Bock, S.C. Mutations in a CpG dinucleotide change reactive site arginine-444 to cysteine in dysfunctional C1 inhibitor Da and histidine in dysfunctional C1 inhibitor Ri. J biol. Chem. 264, 3066–3071 (1989).

    CAS  PubMed  Google Scholar 

  108. Aulak, K.S., Cicardi, M. & Harrison, R.A. Identification of a new P1 residue mutation (Arg444 → Ser) in a dysfunctional C1 inhibitor contained in a type II hereditary angioedema plasma. FEBS Letts 226, 13–16 (1990).

    Google Scholar 

  109. Frangi, D., Aulak, K.S., Cicardi, M., Harrison, R.A. & Davis, A.E. III.A dysfunctional C1 inhibitor protein with a new reactive center mutation (Arg-444 → Leu). FEBS Letts 301, 34–36 (1992).

    CAS  Google Scholar 

  110. Stephens, A.W., Thalley, B.S. & Hirs, C.H.W., Antithrombin -III Denver, a reactive site variant. J. biol. Chem. 262, 1044–1048 (1987).

    CAS  PubMed  Google Scholar 

  111. Bock, S.C., Silberman, J.A., Wikoff, W., Abildgaard, U. & Hultin, M.B. Identification of a threonine for alanine substitution at residue 404 of antithrombin III Oslo suggests integrity of the 404-407 region is important for maintaining normal inhibitor levels. Thromb. Haemost. 62, 494 (1989).

    Google Scholar 

  112. Nakagawa, M., Tanaka, S., Tsuji, H., Takada, O. & Ono, T. Congenital antithrombin deficiency (AT-111 Kyoto): identification of a point mutation altering arginine-406 to methionine behind the reactive site. Thromb. Res. 64, 101–108 (1991).

    CAS  PubMed  Google Scholar 

  113. Bock, S.C., Marrinan, J.A. & Radziejewska, E. Antithrombin III Utah: proline 407 to leucine mutation in a highly conserved region near the inhibitor reactive site. Biochemistry 27, 6171–6178 (1988).

    CAS  PubMed  Google Scholar 

  114. Jochmans, K. et al. Antithrombin-Gly 424 Arg: a novel point mutation responsible for type 1 antithrombin deficiency and neonatal thrombosis. Blood 83, 146–151 (1994).

    CAS  PubMed  Google Scholar 

  115. Millar, D.S. et al. Screening for mutations in the antithrombin III gene causing recurrent venous thrombosis by single-strand conformation polymorphism analysis. Hum. Mutat. 2, 324–326 (1993).

    CAS  PubMed  Google Scholar 

  116. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of poteins. J. appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

  117. Nicholls, A. GRASP: Graphical Representation and Analysis of Surface Properties. Colombia University, New York (1992).

  118. Tait, R.C. et al. Prevalence of antithrombin deficiency in the healthy population. Br. J. Haemal 87, 106–112 (1994)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, P., Carrell, R. What do dysfunctional serpins tell us about molecular mobility and disease?. Nat Struct Mol Biol 2, 96–113 (1995). https://doi.org/10.1038/nsb0295-96

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0295-96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing