Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of Sky1p reveals a novel mechanism for constitutive activity

Abstract

Sky1p is the only member of the SR protein kinase (SRPK) family in Saccharomyces cerevisiae. SRPKs are constitutively active kinases that display remarkable substrate specificity and have been implicated in RNA processing. Here we present the three-dimensional structure of a fully active truncated Sky1p. Analysis of the structure and structure-based functional studies reveal that the C-terminal tail, an unusual Glu residue located in the P+1 loop, and a unique mechanism for the positioning of helix αC act together to render Sky1p constitutively active. We have modeled a substrate peptide bound to Sky1p. The modeled complex combined with mutagenesis studies illustrate the molecular basis for substrate recognition by this kinase and suggest a mechanism by which SRPKs catalyze a sequential phosphorylation reaction of the consecutive RS dipeptide repeats characteristic of mammalian SRPK substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment and secondary structure of an active Sky1p construct.
Figure 2: Overall structure of Sky1p.
Figure 3: The active conformation of Sky1p and the orientation of helix αC.
Figure 4: Activation loop conformation and the C-terminal tail.
Figure 5: The role of Gln 566 in maintaining the active conformation.
Figure 6: Substrate specificity of Sky1p.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cao, W. & Garcia-Blanco, M.A. A serine/arginine-rich domain in the human U1 70k protein is necessary and sufficient for ASF/SF2 binding. J. Biol. Chem. 273, 20629–20635 (1998).

    Article  CAS  Google Scholar 

  2. Xiao, S.H. & Manley, J.L. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11, 334–344 (1997).

    Article  CAS  Google Scholar 

  3. Gui, J.-F., Tronchere, H., Chandler, S.D. & Fu, X.-D. Purification and characterization of a kinase specific for the serine- and arginine-rich pre-mRNA splicing factors. Proc. Natl. Acad. Sci. USA 91, 10824–10828. (1994).

    Article  CAS  Google Scholar 

  4. Siebel, C.W., Feng, L., Guthrie, C. & Fu, X.D. Conservation in budding yeast of a kinase specific for SR splicing factors. Proc. Natl. Acad. Sci. USA 96, 5440–5445 (1999).

    Article  CAS  Google Scholar 

  5. Kadowaki, T. et al. Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants. J. Cell Biol. 126, 649–659 (1994).

    Article  CAS  Google Scholar 

  6. Lee, M.S., Henry, M. & Silver, P.A. A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export. Genes Dev. 10, 1233–1246 (1996).

    Article  CAS  Google Scholar 

  7. Yun, C.Y. & Fu, X.-D. Conserved SR protein kinase is involved in regulated nuclear import and its action is counteracted by arginine methylation in S. cerevisiae. J. Cell Biol. 150, 707–717 (2000).

    Article  CAS  Google Scholar 

  8. Colwill, K. et al. SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors. J. Biol. Chem. 271, 24569–24575 (1996).

    Article  CAS  Google Scholar 

  9. Wang, H.Y. et al. SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J. Cell Biol. 140, 737–750 (1998).

    Article  CAS  Google Scholar 

  10. Taylor, S.S. & Radzio-Andzelm, E. Three protein kinase structures define a common motif. Structure 2, 345–355 (1994).

    Article  CAS  Google Scholar 

  11. Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H. & Goldsmith, E.J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869 (1997).

    Article  CAS  Google Scholar 

  12. Xie, X. et al. Crystal structure of JNK3: a kinase implicated in neuronal apoptosis. Structure 6, 983–991 (1998).

    Article  CAS  Google Scholar 

  13. Bellon, S., Fitzgibbon, M.J., Fox, T., Hsiao, H.-M. & Wilson, K.P. The structure of phosphorylated P38gamma is monomeric and reveals a conserved activation-loop conformation. Structure 7, 1057–1065 (1999).

    Article  CAS  Google Scholar 

  14. Zheng, J. et al. 2.2 Å refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr. D 49, 362–365 (1993).

    Article  CAS  Google Scholar 

  15. Jeffrey, P.D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–320 (1995).

    Article  CAS  Google Scholar 

  16. Radzio-Andzelm, E., Lew, J. & Taylor, S. Bound to activate: conformational consequences of cyclin binding to CDK2. Structure 3, 1135–1141 (1995).

    Article  CAS  Google Scholar 

  17. Taylor, S.S. et al. Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft. Pharmacol. Ther. 82, 133–141 (1999).

    Article  CAS  Google Scholar 

  18. Johnson, L.N., Noble, M.E.M. & Owen, D.J. Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158 (1996).

    Article  CAS  Google Scholar 

  19. Johnson, L.N., Lowe, E.D., Noble, M.E.M. & Owen, D.J. The structural basis for substrate recognition and control by protein kinases. FEBS Lett. 430, 1–11 (1998).

    Article  CAS  Google Scholar 

  20. Niefind, K., Guerra, B., Pinna, L.A., Issinger, O.-G. & Schomburg, D. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 angstrom resolution. EMBO J. 17, 2451–2462 (1998).

    Article  CAS  Google Scholar 

  21. Brown, N.R., Nobel, E.M., Endicott, J.A. & Johnson, L.N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nature Cell Biol. 1, 438–443 (1999).

    Article  CAS  Google Scholar 

  22. De Bondt, H.L. et al. Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602 (1993).

    Article  CAS  Google Scholar 

  23. Wilson, K.P. et al. Crystal structure of p38 mitogen-activated protein kinase. J. Biol. Chem. 271, 27696–27700 (1996).

    Article  CAS  Google Scholar 

  24. Wang, Z. et al. The structure of mitogen-activated protein kinase p38 at 2.1-Å resolution. Proc. Natl. Acad. Sci. USA 94, 2327–2332 (1997).

    Article  CAS  Google Scholar 

  25. Zhang, J., Zhang, F., Ebert, D., Cobb, M.H. & Goldsmith, E.J. Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure 3, 299–307 (1995).

    Article  CAS  Google Scholar 

  26. Roach, P.J. Multisite and hierarchical protein phosphorylation. J. Biol. Chem. 266, 14139–14142 (1991).

    CAS  PubMed  Google Scholar 

  27. Stojdl, D.F. & Bell, J.C. SR protein kinases: the splice of life. Biochem. Cell Biol. 77, 293–298 (1999).

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  29. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  30. LaFortelle, E.d. & Bricogne, G. Maximun-likelihood heavy-atom parameter refinement in the MIR and MAD methods. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  31. Jones, T.A. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  32. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  33. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thorton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  34. Phelps, C.B., Sengchanthalangsy, L.L., Huxford, T. & Ghosh, G. Mechanism of IκBα binding to NFκB dimers. J. Biol. Chem. 275, 29840–29846 (2000).

    Article  CAS  Google Scholar 

  35. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  36. Hubbard, S.R., Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).

    Article  CAS  Google Scholar 

  37. Meritt, E.A. & Murphy, M.E.P. Raster3d version 2.0 — a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  38. Madura, J.D. et al. Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput. Phys. Commun. 91, 57–95 (1995).

    Article  CAS  Google Scholar 

  39. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association — insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank T. Huxford and the other members of the Ghosh lab for comments on the manuscript and N. Nguyen for his technical assistance at the UCSD X-ray source. B.N. is supported by a fellowship from the Molecular Biophysics Training Program. C.Y. is a National Cancer Institute graduate trainee for Cancer Cell Biology. X.-D.F. is a Leukemia and Lymphoma Scholar; G.G. is an Alfred P. Sloan fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourisankar Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolen, B., Yun, C., Wong, C. et al. The structure of Sky1p reveals a novel mechanism for constitutive activity. Nat Struct Mol Biol 8, 176–183 (2001). https://doi.org/10.1038/84178

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing