Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a photoactive rhodium complex intercalated into DNA

Abstract

Intercalating complexes of rhodium(III) are strong photo-oxidants that promote DNA strand cleavage or electron transfer through the double helix. The 1.2 Å resolution crystal structure of a sequence-specific rhodium intercalator bound to a DNA helix provides a rationale for the sequence specificity of rhodium intercalators. It also explains how intercalation in the center of an oligonucleotide modifies DNA conformation. The rhodium complex intercalates via the major groove where specific contacts are formed with the edges of the bases at the target site. The phi ligand is deeply inserted into the DNA base pair stack. The primary conformational change of the DNA is a doubling of the rise per residue, with no change in sugar pucker from B-form DNA. Based upon the five crystallographically independent views of an intercalated DNA helix observed in this structure, the intercalator may be considered as an additional base pair with specific functional groups positioned in the major groove.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the rhodium complex bound to the DNA oligonucleotide 5′-G(dIU)TGCAAC-3′.
Figure 2: Sequence-specific interactions between the rhodium complex and the DNA major groove.

Similar content being viewed by others

References

  1. Lerman, L.S. J. Mol. Biol. 3, 18–30 ( 1961).

    Article  CAS  Google Scholar 

  2. Wilson, W.D. & Jones, R.L. Adv. Pharmacol. Chemother. 18, 177–222 (1981).

    Article  CAS  Google Scholar 

  3. W. Saenger Principles of nucleic acid structure. (Springer-Verlag, New York, New York; 1984).

    Book  Google Scholar 

  4. Johann, T.W. & Barton, J.K. Phil. Trans. R. Soc. Lond. A 354, 299–324 (1996).

    Article  CAS  Google Scholar 

  5. Dandliker, P.J., Holmlin, R.E. & Barton, J.K. Science 275, 1465– 1468 (1997).

    Article  CAS  Google Scholar 

  6. Sitlani, A., Long, E.C., Pyle, A.M. & Barton, J.K. J. Am. Chem. Soc. 114, 2303–2312 ( 1992).

    Article  CAS  Google Scholar 

  7. Hall, D.B., Holmlin, R.E. & Barton, J.K. Nature 382, 731– 735 (1996).

    Article  CAS  Google Scholar 

  8. Murphy, C.J. & Barton, J.K. Methods Enzymol. 226 , 576–594 (1993).

    Article  CAS  Google Scholar 

  9. Jackson, B.A., Alekseyev, V.Y. & Barton, J.K. Biochemistry 38, 4655– 4662 (1999).

    Article  CAS  Google Scholar 

  10. Chow, C.S. & Barton, J..K. Methods Enzymol. 212 , 219–242 (1992).

    Article  CAS  Google Scholar 

  11. Holmlin, R.E., Dandliker, P.J. & Barton, J.K. Angew. Chemie Intl. Ed. 36, 2715–2730 (1997).

    Article  Google Scholar 

  12. Odom, D.T., Parker, C.S. & Barton, J.K. Biochemistry 38, 5155– 5163 (1999).

    Article  Google Scholar 

  13. Krotz, A.H., Hudson, B.P. & Barton, J.K. J. Am. Chem. Soc. 115, 12577 –12578 (1993).

    Article  CAS  Google Scholar 

  14. Hudson, B.P. & Barton, J.K. J. Am. Chem. Soc. 120 , 6877–6888 (1998).

    Article  CAS  Google Scholar 

  15. Sobell, H.M., Tsai, C.C., Jain, S.C. & Gilbert, S.G. J. Mol. Biol. 114, 333–365 ( 1977).

    Article  CAS  Google Scholar 

  16. Wang, A.H.-J. et al. Nature 276, 471–474 (1978).

    Article  CAS  Google Scholar 

  17. Wang, A.H.-J. et al. J. Biomolec. Struct. Dynamics 4, 319 –342 (1986).

    Article  CAS  Google Scholar 

  18. Wang, A.H.-J., Ughetto, G., Quigley, G.J. & Rich, A. Biochemistry 26, 1152–1163 ( 1987).

    Article  CAS  Google Scholar 

  19. Kamitori, S. & Takusagawa, F. J. Mol. Biol. 225 , 445–456 (1992).

    Article  CAS  Google Scholar 

  20. Gasper, S. M. et al. J. Am. Chem. Soc. 120, 12402– 12409 (1998).

    Article  CAS  Google Scholar 

  21. Bugg, C.E., Thomas, J.M. & Sundaralingam, M. & Rao, S.T. Biopolymers 10, 175–219 (1971).

    Article  CAS  Google Scholar 

  22. Kelley, S.O. & Barton, J.K. Science 283, 375–381 (1999).

    Article  CAS  Google Scholar 

  23. Egli, M. & Gessner, R.V. Proc. Natl. Acad. Sci. USA 92, 180–184 (1995).

    Article  CAS  Google Scholar 

  24. Shields, T.P. & Barton, J.K. Biochemistry 34, 15037–15408 (1995).

    Article  CAS  Google Scholar 

  25. Krotz, A.H., Kuo, L.Y., Shields, T.P. & Barton, J.K. J. Am. Chem. Soc. 115, 3877–3882 ( 1993).

    Article  CAS  Google Scholar 

  26. Baker, E.N. & Hubbard, R.E. Prog. Biophys. Molec. Biol. 44, 97–179 (1984).

    Article  CAS  Google Scholar 

  27. Schwabe, J.W.R. Curr. Opin. Struct. Biol. 7, 126–134 (1997).

    Article  CAS  Google Scholar 

  28. Krotz, A.H. & Barton, J.K. Inorg. Chem. 33, 1940–1947 (1994).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. In Data collection and processing (eds Sawyer, N.I.L. & Bailey, S.) 56–61(SERC Daresbury Laboratory, United Kingdom; 1993).

    Google Scholar 

  30. Terwilliger, T.C. SOLVE. http://www.solve.lanl.gov (1999).

    Google Scholar 

  31. Bailey, S. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  32. Sheldrick, G.M. & Schneider, T.R. Methods Enzymol. 277, 319–343 (1997).

    Article  CAS  Google Scholar 

  33. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277 , 505–524 (1997).

    Article  CAS  Google Scholar 

  34. Esnouf, R.M. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  35. Lavery, R. & Sklenar, H. J. Biomolec. Struct. Dynamics 6, 63–91 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the NIH for research support and to the NSF and NIH for predoctoral fellowships to C.L.K and K.E.E. We thank L. Joshua-Tor, S.S. David, J.E. Wedekind, A.J. Chirino and R. Bau for assistance with the structure solution, and S. Horvath for oligonucleotide synthesis. The rotation camera facility at SSRL is supported by the U.S. Department of Energy and NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacqueline K. Barton or Douglas C. Rees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kielkopf, C., Erkkila, K., Hudson, B. et al. Structure of a photoactive rhodium complex intercalated into DNA. Nat Struct Mol Biol 7, 117–121 (2000). https://doi.org/10.1038/72385

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72385

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing