Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crystal structure of GMP synthetase reveals a novel catalytic triad and is a structural paradigm for two enzyme families

Abstract

The crystal structure of GMP synthetase serves as a prototype for two families of metabolic enzymes. The Class I glutamine amidotransferase domain of GMP synthetase is found in related enzymes of the purine, pyrimidine, tryptophan, arginine, histidine and folic acid biosynthetic pathways. This domain includes a conserved Cys-His-Glu triad and is representative of a new family of enzymes that use a catalytic triad for enzymatic hydrolysis. The structure and conserved sequence fingerprint of the nucleotide-binding site in a second domain of GMP synthetase are common to a family of ATP pyrophosphatases, including NAD synthetase, asparagine synthetase and argininosuccinate synthetase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hyde, C.C., Ahmed, S.A., Padlan, E.A., Miles, E.W. & Davies, D.R. Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium . J. biol. Chem. 263, 17857–17871 (1988).

    CAS  PubMed  Google Scholar 

  2. Wilson, K.P., Shewchuk, L.M., Brennan, R.G., Otsuka, A.J. & Matthews, B.W. Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proc. natn. Acad. Sci. U.S.A. 89, 9257–9261 (1992).

    CAS  Google Scholar 

  3. Zalkin, H. The amidotransferases. Adv. Enzymol. Relat Areas molec. Biol. 66, 203–309 (1993).

    CAS  Google Scholar 

  4. Fukuyama, T.T. & Moyed, H.S. A separate antibiotic binding site in xanthosine-5'-phosphate aminase: Inhibitor- and substrate-binding studies. Biochemistry 3, 1488–1492 (1964).

    CAS  PubMed  Google Scholar 

  5. von der Saal, W., Crysler, C.S. & Villafranca, J.J. Positional isotope exchange and kinetic experiments with Escherichia coli guanosine 5'-monophosphate synthetase. Biochemistry 24, 5343–5350 (1985).

    CAS  PubMed  Google Scholar 

  6. Lusty, C.J. Detection of an enzyme bound γ-glutamyl acyl ester of carbamyl phosphate synthetase of Escherichia coli . FEBS Lett. 314, 135–138 (1992).

    CAS  PubMed  Google Scholar 

  7. Roux, B. & Walsh, C.T. p-Aminobenzoate synthesis in Escherichia coli: kinetic and mechanistic characterization of the amidotransferase PabA. Biochemistry 31, 6904–6910 (1992).

    CAS  PubMed  Google Scholar 

  8. Amuro, N., Paluh, J.L. & Zalkin, H. Replacement by site-directed mutagenesis indicates a role for histidine 170 in the glutamine amide transfer function of anthranilate synthase. J. biol. Chem. 260, 14844–14849 (1985).

    CAS  PubMed  Google Scholar 

  9. Willison, J.C. Biochemical genetics revisited: the use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria. FEMS microbiol. Rev. 104, 1–38 (1993).

    CAS  Google Scholar 

  10. Bork, P. & Koonin, E.V. A P-loop-like motif in a widespread ATP pyrophosphatase domain: implications for the evolution of sequence motifs and enzyme activity. Proteins 20, 347–355 (1994).

    CAS  PubMed  Google Scholar 

  11. Van Lookeren Campagne, M.M., Franke, J. & Kessin, R.H. Functional cloning of a Dictyostelium discoideum cDNA encoding GMP synthetase. J. biol. Chem. 266, 16448–16452 (1991).

    CAS  PubMed  Google Scholar 

  12. Hirst, M., Haliday, E., Nakamura, J. Lou, L. Human GMP synthetase. Protein purification, cloning, and functional expression of cDNA. J. biol. Chem. 269, 23830–23837 (1994).

    CAS  PubMed  Google Scholar 

  13. Sakamoto, N., Hatfield, G.W. & Moyed, H.S. Physical properties and subunit structure of xanthosine 5'-phosphate aminase. J. biol. Chem. 247, 5880–5887 (1972).

    CAS  PubMed  Google Scholar 

  14. Tesmer, J.J.G., Stemmler, T.L., Penner-Hahn, J.E., Davisson, V.J. & Smith, J.L. Preliminary X-ray analysis of Escherichia coli GMP synthetase: determination of anomalous scattering factors for a cysteinyl mercury derivative. Proteins 18, 394–403 (1994).

    CAS  PubMed  Google Scholar 

  15. Oillis, D.L. et al. The α/β hydrolase fold. Prot. Engng. 5, 197–211 (1992).

    Google Scholar 

  16. Yee, V.C. et al. Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII. Proc. natn. Acad. Sci. U.S.A. 91, 7296–7300 (1994).

    CAS  Google Scholar 

  17. Wei, Y. et al. A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nature struct. Biol. 2, 218–223 (1995).

    CAS  PubMed  Google Scholar 

  18. Roux, B. & Walsh, C.T. p-Aminobenzoate synthesis in Escherichia coli: mutational analysis of three conserved amino acid residues of the amidotransferase PabA. Biochemistry 32, 3763–3768 (1993).

    CAS  PubMed  Google Scholar 

  19. Sprang, S. et al. The three-dimensional structure of asn102 mutant of trypsin: role of asp102 in serine protease catalysis. Science 237, 905–909 (1987).

    CAS  PubMed  Google Scholar 

  20. Carter, P. & Wells, J.A. Dissecting the catalytic triad of a serine protease. Nature 332, 564–568 (1988).

    CAS  PubMed  Google Scholar 

  21. McGrath, M.E., Wilke, M.E., Higaki, J.N., Craik, C.S. & Fletterick, R.J. Crystal structures of two engineered thiol trypsins. Biochemistry 28, 9264–9270 (1989).

    CAS  PubMed  Google Scholar 

  22. Corey, D.R. & Craik, C.S. An investigation into the minimum requirements for peptide hydrolysis by mutation of the catalytic triad of trypsin. J. Am. chem. Soc 114, 1784–1790 (1992).

    CAS  Google Scholar 

  23. Matthews, D.A. et al. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77, 761–771 (1994).

    CAS  PubMed  Google Scholar 

  24. Rossmann, M.G., Liljas, A., Bränden, C.-I. & Banaszak, L.J. in The Enzymes (ed. Boyer, P.D.) 61–102 (Academic Press, New York, 1975).

    Google Scholar 

  25. Schulz, G.E. Binding of nucleotides by proteins. Curr. Opin. struct. Biol. 2, 61–67 (1992).

    CAS  Google Scholar 

  26. Sturrock, S.S. & Collins, J.F. MPsrch version 1.5 (University of Edinburgh, UK, 1993).

    Google Scholar 

  27. Perona, J., Rould, M.A. & Steitz, T.A. Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase. Biochemistry 32, 8758–8771 (1993).

    CAS  PubMed  Google Scholar 

  28. Kobayashi, K., Jackson, M.J., Tick, D.B., O'Brien, W.E. & Beaudet, A.L. Heterogeneity of mutations in argininosuccinate synthetase causing human citrullinemia. J. biol. Chem. 265, 11361–11367 (1990).

    CAS  PubMed  Google Scholar 

  29. Kobayashi, K., Rosenbloom, C., Beaudet, A.L. & O'Brien, W.E. Additional mutations in argininosuccinate synthetase causing citrullinemia. Mol. biol.Med. 8, 95–100 (1991).

    CAS  PubMed  Google Scholar 

  30. Scapin, G., Grubmeyer, C & Sacchettini, J.C. Crystal structure of orotate phosphoribosyltransferase. Biochemistry 33, 1288–1294 (1994).

    Google Scholar 

  31. Smith, J.L. et al. Structure of the allosteric regulatory enzyme of purine biosynthesis. Science 264, 1427–1433 (1994).

    CAS  PubMed  Google Scholar 

  32. Eads, J.C., Scapin, G., Xu, Y., Grubmeyer, C. & Sacchettini, J.C. The crystal structure of human hypoxanthine-guanine phosphoribosyltransferase. Cell 78, 325–334 (1994).

    CAS  PubMed  Google Scholar 

  33. Spencer, R.L. & Preiss, J. Biosynthesis of diphosphopyridine nucleotide: The purification and the properties of diphosphopyridine nucleotide synthetase from Escherichia coli . J. biol. Chem. 242, 385–392 (1967).

    CAS  PubMed  Google Scholar 

  34. Suyama, M., Ogiwara, A., Nishioka, T. & Oda, J. Searching for amino acid motifs among enzymes: the enzyme-reaction database. Comput. appl. Biosci. 9, 9–15 (1993).

    CAS  PubMed  Google Scholar 

  35. Hirai, K., Matsuda, Y. & Nakagawa, H. Purification and characterization of GMP synthetase from Yoshida sarcoma ascites cells. J. Biochem. 102, 893–902 (1987).

    CAS  PubMed  Google Scholar 

  36. Nakamura, J. & Lou, L. Biochemical characterization of human GMP synthetase. J. biol. Chem. 270, 7347–7353 (1995).

    CAS  PubMed  Google Scholar 

  37. Zalkin, H. & Truitt, C.D. Characterization of the glutamine site of Escherichia coli guanosine 5'-monophosphate synthetase. J. biol. Chem. 252, 5431–5436 (1977).

    CAS  PubMed  Google Scholar 

  38. Patel, N., Moyed, H.S. & Kane, J.F. Properties of xanthosine 5'-monophosphate-amidotransferase from Escherichia coli . Arch. Biochem. Biophys. 178, 652–661 (1977).

    CAS  PubMed  Google Scholar 

  39. Zyk, N., Citri, N. & Moyed, H.S. Conformative response of xanthosine 5'-phosphate aminase. Biochemistry 8, 2787–2794 (1969).

    CAS  PubMed  Google Scholar 

  40. Anderson, C.M., Zucker, F.H. & Steitz, T.A. Space-filling models of kinase clefts and conformation changes. Science 204, 375–380 (1979).

    CAS  PubMed  Google Scholar 

  41. Liao, D.-I., Karpusas, M. & Remington, S.J. Crystal structure of an open conformation of citrate synthase from chicken heart at 2. 8-Å resolution. Biochemistry 30, 6031–6036 (1991).

    CAS  PubMed  Google Scholar 

  42. Vonrhein, C., Schlauderer, G.J. & Schulz, G.E. Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinase. Structure 3, 483–490 (1995).

    CAS  PubMed  Google Scholar 

  43. Hendrickson, W.A., Horton, J.R. & LeMaster, D.M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nair, V. & David, A.J. A new synthesis of isoguanosine. J. org. Chem. 50, 406–408 (1985).

    CAS  Google Scholar 

  45. Mishra, N.C. & Broom, A.D. A novel synthesis of nucleoside 5'-triphosphates. J. Chem. Soc chem. Commun. 1991, 1276 (1991).

    Google Scholar 

  46. Hamlin, R. Multiwire area X-ray diffractometers. Meth. Enzymol. 114, 416–452 (1985).

    CAS  Google Scholar 

  47. Howard, A.J., Nielsen, C. & Xuong, N.H. Software for a diffractometer with multiwire area detector. Meth. Enzymol. 114, 452–472 (1985).

    CAS  Google Scholar 

  48. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. appl. Crystallogr. 21, 916–924 (1988).

    CAS  Google Scholar 

  49. Bailey, S. The CCP4 suite-programs for protein crystallography. Acta crystallogr. D50, 760–763 (1994).

    CAS  Google Scholar 

  50. Sakabe, N. X-ray diffraction data collection system for modern protein crystallography with a Weissenberg camera and an imaging plate using synchrotron radiation. Nucl. Instr. Meth. A303, 448–463 (1991).

    CAS  Google Scholar 

  51. Otwinowski, Z. in Data Collection and Processing (ed. Sawyer, N.I. & Bailey, S.) 56–62 (Science and Engineering Research Council Daresbury Laboratory, Daresbury, U.K., 1993).

    Google Scholar 

  52. Quiocho, F.A. & Richards, F.M. Intermolecular cross linking of a protein in the crystalline state: carboxypeptidase-A. Proc. natn. Acad. Sci. U.S.A. 52, 833 (1964).

    CAS  Google Scholar 

  53. Ringe, D., Petsko, G.A., Yamakura, F., Suzuki, K. & Ohmori, D. Structure of iron superoxide dismutase from Pseudomonas ovalis at 2. 9-Å resolution. Proc. natn. Acad. Sci. U.S.A. 80, 3879–3883 (1983).

    CAS  Google Scholar 

  54. Otwinowski, Z. in Isomorphous Replacement and Anomalous Scattering (ed. Wolf, W. & Leslie, A.G.W.) 80–86 (Science and Engineering Research Council Daresbury Laboratory, Daresbury, U. K., 1991).

    Google Scholar 

  55. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

    CAS  Google Scholar 

  56. Brünger, A.T. X-PLOR Version 3.1 A system for X-ray Crystallography and NMR 1–382 (Yale University Press, New Haven and London, 1992).

    Google Scholar 

  57. Brünger, A.T., Krukowski, A. & Erickson, J.W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta crystallogr. A46, 585–593 (1990).

    Google Scholar 

  58. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta crystallogr. A47, 392–400 (1991).

    CAS  Google Scholar 

  59. Tiedeman, A.A., Smith, J.M. & Zalkin, H. Nucleotide sequence of the guaA gene encoding GMP synthetase of Escherichia coli K12. J. biol. Chem. 260, 8676–8679 (1985).

    CAS  PubMed  Google Scholar 

  60. Mäntsälä, P. & Zalkin, H. Cloning and sequence of Bacillus subtilis pur A and guaA, involved in the conversion of IMP to AMP and GMP. J. Bacteriol. 174, 1883–1890 (1992).

    PubMed  PubMed Central  Google Scholar 

  61. Dujardin, G., Kermorgant, M., Slonimski, P.P. & Boucherie, H. Cloning and sequencing of the GMP synthetase-encoding gene of Saccharomycescerevisiae . Gene 139, 127–132 (1994).

    CAS  PubMed  Google Scholar 

  62. Smith, J.L. Structures of glutamine amidotransferases from the purine biosynthetic pathway. Biochem. Soc. Trans. 23, 894–898 (1995).

    CAS  PubMed  Google Scholar 

  63. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schroeder, E., Phillips, C., Garman, E., Harlos, K. & Crawford, C. X-ray crystallographic structure of a papain leupeptin complex. FEBS Lett. 315, 38–42 (1993).

    Google Scholar 

  65. Baker, E.N. & Drenth, J. in Biological Macromolecules and Assemblies, Vol. 3 (eds. Jurnak, F.A. & McPherson, A.) 314–368 (Wiley, New York, 1987).

    Google Scholar 

  66. Marquart, M., Walter, J., Deisenhofer, J., Bode, W. & Huber, R. The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors. Acta crystallogr. b39, 480–490 (1983).

    CAS  Google Scholar 

  67. Bullock, T.L., Branchaud, B. & Remington, S.J. Structure of the complex of L-benzylsuccinate with wheat serine carboxypeptidase II at 2. 0-Å resolution. Biochemistry 33, 11127–11134 (1994).

    CAS  PubMed  Google Scholar 

  68. Nishikawa, K. & Ooi, T. Comparison of homologous tertiary structures of proteins. J. theor. Biol. 43, 351–374 (1974).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesmer, J., Klem, T., Deras, M. et al. The crystal structure of GMP synthetase reveals a novel catalytic triad and is a structural paradigm for two enzyme families. Nat Struct Mol Biol 3, 74–86 (1996). https://doi.org/10.1038/nsb0196-74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0196-74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing