Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ionic interactions and the global conformations of the hammerhead ribozyme

Abstract

Here we investigate the global conformation of the hammerhead ribozyme. Electrophoretic studies demonstrate that the structure is folded in response to the concentration and type of ions present. Folding based on colinear alignment of arms II and III is suggested, with a variable angle subtended by the remaining helix I. In the probable active conformation, a small angle is subtended between helices I and II. Using uranyl photocleavage, an ion binding site has been detected in the long single-stranded region. The folded conformation could generate a pre-activation of the scissile bond to permit in-line attack of the 2′- hydroxyl group, with a bound metal ion playing an integral role in the chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gesteland, R.F. & Atkins, J.F. The RNA world. (Cold Spring Harbor Press, New York, 1993).

    Google Scholar 

  2. Forster, A.C. & Symons, R.H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49, 211–220 (1987).

    Article  CAS  Google Scholar 

  3. Hazeloff, J.P. & Gerlach, W.L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591 (1988).

    Article  Google Scholar 

  4. Epstein, L.M. & Gall, J.G. Self-cleaving transcripts of satellite DNA from the newt. Cell 48, 535–543 (1987).

    Article  CAS  Google Scholar 

  5. Feldstein, P.A., Buzayan, J.M. & Bruening, G. Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene 82, 53–61 (1989).

    Article  CAS  Google Scholar 

  6. Hampel, A. & Tritz, R. RNA catalytic properties of the minimum (−)sTRSV sequence. Biochemistry 28, 4929–4933 (1989).

    Article  CAS  Google Scholar 

  7. Sharmeen, L., Kuo, M.Y., Dinter-Gottlieb, G. & Taylor, J. Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. J. Virol. 62, 2674–2679 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dahm, S.C. & Uhlenbeck, O.C. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30, 9464–9469 (1991).

    Article  CAS  Google Scholar 

  9. Uhlenbeck, U.C. A small catalytic oligoribonucleotide. Nature 328, 596–600 (1987).

    Article  CAS  Google Scholar 

  10. Fedor, M.J. & Uhlenbeck, O.C. Substrate sequence effects on “hammerhead” RNA catalytic efficiency. Proc. natn. Acad. Sci. U.S.A. 87, 1668–1672 (1990).

    Article  CAS  Google Scholar 

  11. Fedor, M.J. & Uhlenbeck, O.C. Kinetics of intermolecular cleavage by hammerhead ribozymes. Biochemistry 31, 12042–12054 (1992).

    Article  CAS  Google Scholar 

  12. Hertel, K.J., Herschlag, D. & Uhlenbeck, O.C. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33, 3374–3385 (1994).

    Article  CAS  Google Scholar 

  13. Hutchins, C.J., Rathjen, P.D., Forster, A.C. & Symons, R.H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 14, 3627–3640 (1986).

    Article  CAS  Google Scholar 

  14. Ruffner, D.E., Stormo, G.D. & Uhlenbeck, O.C. Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29, 10695–10702 (1990).

    Article  CAS  Google Scholar 

  15. Olsen, D.B., Benseler, F., Aurup, H., Pieken, W.A. & Eckstein, F. Study of a hammerhead ribozyme containing 2′-modified adenosine residues. Biochemistry 30, 9735–9741 (1991).

    Article  CAS  Google Scholar 

  16. Williams, D.M., Pieken, W.A. & Eckstein, F. Function of specific 2′-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2′-modifications. Proc. natn. Acad. Sci. U.S.A. 89, 918–921 (1992).

    Article  CAS  Google Scholar 

  17. Fu, D.-J. & McLaughlin, L.W. Importance of specific purine amino and hydroxyl groups for efficient cleavage by a hammerhead ribozyme. Proc. natn. Acad. Sci. U.S.A. 89, 3985–3989 (1992).

    Article  CAS  Google Scholar 

  18. Fu, D.-J. & McLaughlin, L.W. Importance of specific adenosine N7-nitrogens for efficient cleavage by a hammerhead ribozyme. A model for magnesium binding. Biochemistry 31, 10941–10949 (1992).

    Article  CAS  Google Scholar 

  19. Paolella, G., Sproat, B.S. & Lamond, A.I. Nuclease resistant ribozymes with high catalytic activity. EMBO J. 11, 1913–1919 (1992).

    Article  CAS  Google Scholar 

  20. Yang, J.-H., Usman, N., Chartrand, P. & Cedergren, R. Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry 31, 5005–5009 (1992).

    Article  CAS  Google Scholar 

  21. Fu, D.J., Rajur, S.B. & McLaughlin, L.W. Importance of specific guanosine N7-nitrogens and purine amino groups for efficient cleavage by a hammerhead ribozyme. Biochemistry 32, 10629–10637 (1993).

    Article  CAS  Google Scholar 

  22. Tuschl, T., Ng, M.M.P., Pieken, W., Benseler, F. & Eckstein, F. Importance of exocyclic base functional groups of central core guanosines for hammerhead ribozyme activity. Biochemistry 32, 11658–11668 (1993).

    Article  CAS  Google Scholar 

  23. Seela, F., Mersmann, K., Grasby, J.A. & Gait, M.J. 7-Deazaadenosine - oligoribonucleotide building block synthesis and autocatalytic hydrolysis of base-modified hammerhead ribozymes. Helv. chim. Acta 76, 1809–1820 (1993).

    Article  CAS  Google Scholar 

  24. Grasby, J.A., Butler, P.J.G. & Gait, M.J. The synthesis of oligoribonucleotides containing O6-methylguanosine - the role of conserved guanosine residues in hammerhead ribozyme cleavage. Nucleic Acids Res. 21, 4444–4450 (1993).

    Article  CAS  Google Scholar 

  25. Koizumi, M. & Ohtsuka, E. Effects of phosphorothioate and 2′-amino groups in hammerhead ribozymes on cleavage rates and Mg2+ binding. Biochemistry 30, 5145–5150 (1991).

    Article  CAS  Google Scholar 

  26. Slim, G. & Gait, M.J. Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res. 19, 1183–1188 (1991).

    Article  CAS  Google Scholar 

  27. Dahm, S.C., Derrick, W.B. & Uhlenbeck, O.C. Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry 32, 13040–13045 (1993).

    Article  CAS  Google Scholar 

  28. Gough, G.W. & Lilley, D.M.J. DNA bending induced by cruciform formation. Nature 313, 154–156 (1985).

    Article  CAS  Google Scholar 

  29. Cooper, J.P. & Hagerman, P.J. Gel electrophoretic analysis of the geometry of a DNA four-way junction. J. molec. Biol. 198, 711–719 (1987).

    Article  CAS  Google Scholar 

  30. Duckett, D.R. et al. The structure of the Holliday junction and its resolution. Cell 55, 79–89 (1988).

    Article  CAS  Google Scholar 

  31. Duckett, D.R. & Lilley, D.M.J. The three-way DNA junction is a Y-shaped molecule in which there is no helix-helix stacking. EMBO J. 9, 1659–1664 (1990).

    Article  CAS  Google Scholar 

  32. Duckett, D.R. & Lilley, D.M.J. Effects of base mismatches on the structure of the four-way DNA junction. J. molec. Biol. 221, 147–161 (1991).

    Article  CAS  Google Scholar 

  33. Welch, J.B., Duckett, D.R. & Lilley, D.M.J. Structures of bulged three-way DNA junctions. Nucleic Acids Res. 21, 4548–4555 (1993).

    Article  CAS  Google Scholar 

  34. Møllegaard, N.E., Murchie, A.I.H., Lilley, D.M.J. & Nielsen, P.E. Uranyl photoprobing of a four-way DNA junction: Evidence for specific metal ion binding. EMBO J. 13, 1508–1513 (1994).

    Article  Google Scholar 

  35. Bhattacharyya, A., Murchie, A.I.H. & Lilley, D.M.J. RNA bulges and the helical periodicity of double-stranded RNA. Nature 343, 484–487 (1990).

    Article  CAS  Google Scholar 

  36. Gessner, R.V. et al. Structural basis for stabilisation of Z-DNA by cobalt hexammine and magnesium cations. Biochemistry 24, 237–240 (1985).

    Article  CAS  Google Scholar 

  37. Duckett, D.R., Murchie, A.I.H. & Lilley, D.M.J. The role of metal ions in the conformation of the four-way junction. EMBO J. 9, 583–590 (1990).

    Article  CAS  Google Scholar 

  38. Heus, H.A. & Pardi, A. Nuclear magnetic resonance studies of the hammerhead ribozyme domain. J. molec. Biol. 217, 113–124 (1991).

    Article  CAS  Google Scholar 

  39. Gast, F.U., Amiri, K.M.A. & Hagerman, P.J. Interhelix geometry of stems I and II of a self-cleaving hammerhead RNA. Biochemistry 33, 1788–1796 (1994).

    Article  CAS  Google Scholar 

  40. Shirley, N.J. & Symons, R.H. Probing the hammerhead ribozyme structure with ribonucleases. Nucleic Acids Res. 22, 1620–1625 (1994).

    Article  Google Scholar 

  41. Woisard, A., Fourrey, J.L. & Favre, A. Multiple folded conformations of a hammerhead ribozyme domain under cleavage conditions. J. molec. Biol. 239, 366–370 (1994).

    Article  CAS  Google Scholar 

  42. Moras, D., Comarmond, M.B., Fischer, J., Weiss, R., Thierry, J.C., Ebel, J.P. & Giegé, R. Crystal structure of yeast tRNAAsp. Nature 288, 669–674 (1980).

    Article  CAS  Google Scholar 

  43. Woo, N.H., Roe, B.A. & Rich, A. Three-dimensional structure of E. coli initiator tRNAfMet. Nature 286, 346–351 (1980).

    Article  CAS  Google Scholar 

  44. Tuschl, T. & Eckstein, F. Hammerhead ribozymes - importance of stem-loop-ll for activity. Proc. natl. Acad. Sci. U.S.A. 90, 6991–6994 (1993).

    Article  CAS  Google Scholar 

  45. Ruffner, D.E. & Uhlenbeck, O.C. Thiophosphate interference experiments locate phosphates important for the hammerhead RNA self-cleavage reaction. Nucleic Acids Res. 18, 6025–6029 (1990).

    Article  CAS  Google Scholar 

  46. Woisard, A., Favre, A., Clivio, P. & Fourrey, J.-L. Hammerhead ribozyme tertiary folding: intrinsic photolabeling studies. J. Amer. chem. Soc. 114, 10072–10074 (1992).

    Article  CAS  Google Scholar 

  47. Quigley, G.J., Teeter, M.M. & Rich, A. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc. natn. Acad. Sci. U.S.A. 75, 64–68 (1978).

    Article  CAS  Google Scholar 

  48. Beaucage, S.L. & Caruthers, M.H. Deoxynucleoside phosphoramidites - a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron lett. 22, 1859–1862 (1981).

    Article  CAS  Google Scholar 

  49. Sinha, N.D., Biernat, J., McManus, J. & Koster, H. Polymer support oligonucleotide synthesis XVIII: Use of b-cyanoethyl-N,N-dialkylamino/ N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res. 12, 4539–4557 (1984).

    Article  CAS  Google Scholar 

  50. Perreault, J.-P., Wu, T., Cousineau, B., Ogilvie, K.K. & Cedergren, R. Mixed deoxyribo- and ribooligonucleotides with catalytic activity. Nature 344, 565–567 (1990).

    Article  CAS  Google Scholar 

  51. Hakimelahi, G.H., Proba, Z.A. & Ogilvie, K.K. Tetrahedron let. 22, 5243–5246 (1981).

    Article  CAS  Google Scholar 

  52. Maxam, A.M. & Gilbert, W. Sequencing end-labelled DNA with base-specific chemical cleavages. Meth. Enzymol. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  53. Hertel, K.J. et al. Numbering system for the hammerhead. Nucleic Acids Res. 20, 3252 (1992).

    Article  CAS  Google Scholar 

  54. Pley, H.W., Flaherty, K.M. & Mckay, D.B. Three-dimensional structure of a hammerhead ribozyme. Nature 372, 68–74 (1994).

    Article  CAS  Google Scholar 

  55. Tuschl, I., Gohlke, C., Jovin, T.M., Westhof, E. & Eckstein, F. A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266, 785–789 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassi, G., Møllegaard, NE., Murchie, A. et al. Ionic interactions and the global conformations of the hammerhead ribozyme. Nat Struct Mol Biol 2, 45–55 (1995). https://doi.org/10.1038/nsb0195-45

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0195-45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing