Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel

Abstract

We exploit the random orientations of ice-embedded molecules imaged in an electron cryomicroscope to determine the three-dimensional structure of the Ca2+-release channel from the sarcoplasmic reticulum (SR) in its closed state, without tilting the specimen holder. Our new reconstruction approach includes an exhaustive search of all different characteristic projection images in the micrographs and the assignment ofEuler angle orientations to these views. The 30 Å map implied reveals a structure in which the transmembrane region exhibits no apparent opening on the SR lumen side. The extended cytoplasmic region has a hollow appearance and consists, in each monomer, of a clamp-shaped and a handle-shaped domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Chiu, W. What does electron cryomicroscopy provide that X-ray crystallography and NMR spectroscopy cannot? A. Rev. Biophys. biomolec. Struct. 22, 233–255 (1993).

    Article  CAS  Google Scholar 

  2. Chiu, W. Electron microscopy of frozen, hydrated biological specimens. A. Rev. Biophys. biophys. Chem. 15, 237–257 (1986).

    Article  CAS  Google Scholar 

  3. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  Google Scholar 

  4. Unwin, P.N.T. & Ennis, P.D. Two configurations of a channel-forming membrane protein. Nature 307, 6090–613 (1984).

    Article  Google Scholar 

  5. Jeng, T.W., Crowther, R.A., Stubbs, G. & Chiu, W. Visualization of alpha-helices in tobacco mosaic virus by cryo-electron microscopy. J. molec. Biol. 205, 251–257 (1989).

    Article  CAS  Google Scholar 

  6. Chiu, W. & Smith, T.J. Structural studies of virus-antibody complexes by electron cryomicroscopy and x-ray crystallography. Curr. Opin. Struct. Biol. 4, 219–224 (1994).

    Article  CAS  Google Scholar 

  7. Klug, A. Image analysis and reconstruction in the electron microscopy of biological macromolecules. Chemica Scripta 14, 245–256 (1979).

    CAS  Google Scholar 

  8. Frank, J., Penczek, P., Grassucci, R. & Srivastava, S. Three-dimensional reconstruction of the 70S E. Coli ribosome in ice: the distribution of ribosomal RNA. J. Cell Biol. 115, 597–605 (1991).

    Article  CAS  Google Scholar 

  9. Unwin, P.N.T. Nicotinic acetylcholine receptor at 9 Å resolution. J. molec. Biol. 229, 1101–1124 (1993).

    Article  CAS  Google Scholar 

  10. Zhou, Z.H., Prasad, B.V.V., Jakana, J., Rixon, F. & Chiu, W. Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy. J. molec. Biol. 242, 458–469 (1994).

    Article  Google Scholar 

  11. Schmid, M.F., Agris, J., Jakana, J., Matsudaira, P. & Chiu, W. Three-dimensional structure of a single filament in the Limulus sacrosomal bundle: scruin binds to homologous helix-loop-beta motifs in actin. J. Cell Biol. 124, 341–350 (1994).

    Article  CAS  Google Scholar 

  12. Rayment, I. et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993).

    Article  CAS  Google Scholar 

  13. Cheng, R.H., Reddy, V.S., Olson, N.H., Fisher, A.J., Baker, T.S. & Johnson, J.E. Functional implications of quasi-equivalence in a T=3 icosahedral animal virus established by cryo-electron microscopy and X-ray crystallography. Structure 2, 271–282 (1994).

    Article  CAS  Google Scholar 

  14. van Heel, M. Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 111–124 (1987).

    Article  CAS  Google Scholar 

  15. van Heel, M., Winkler, H., Orlova, E. & Schatz, M. Structural analysis of ice-embedded single particles. Scanning Microscopy Suppl. 6, 23–42 (1992).

    Google Scholar 

  16. Hawkes, M.J., Diaz-Munoz, M. & Hamilton, S.L. A procedure for purification of the ryanodine receptor from skeletal muscle. Memb. Biochem. 8, 133–145 (1989).

    Article  CAS  Google Scholar 

  17. Smith, J.S., Imagawa, T., Ma, J., Fill, M., Campbell, K.P. & Coronado, R. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of saroplasmic reticulum. V. gen. Physiol. 92, 1–26 (1988).

    Article  CAS  Google Scholar 

  18. Avila-Sakar, A.J. et al. Electron cryomicroscopy of B. Stearothermophilus 50S ribosomal subunits crystallized on phospholipid monolayers. J. molec. Biol. 239, 689–697 (1994.)

    Article  CAS  Google Scholar 

  19. van Heel, M. & Keegstra, W. IMAGIC: a fast flexible and friendly image analysis software system. Ultramicroscopy 7, 113–130 (1981).

    Article  Google Scholar 

  20. van Heel, M. & Stöffler-Meilicke, M. Characteristic views of E. Coli and B. stearothermophilus 30S ribosomal subunits in the electron microscope. EMBO J. 4, 2389–2395 (1985).

    Article  CAS  Google Scholar 

  21. Frank, J., Verschoor, A. & Boublik, M. Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214, 1353–1355 (1981).

    Article  CAS  Google Scholar 

  22. Steinkilberg, M. & Schramm, H.J. Eine verbesserte drehkorrelationsmethode fuer die strukturbestimmung biologischer makromolekuele durch mittelung elektronenmikroskopischer bilder. Hoppe-Seyler's Z Physiol. Chem. 361, 1363 (1980).

    Article  CAS  Google Scholar 

  23. van Heel, M. & Frank, J. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy. 6, 187–194 (1981).

    CAS  PubMed  Google Scholar 

  24. van Heel, M. Classification of very large electron microscopical image data sets. Optik 82, 114–126 (1989).

    Google Scholar 

  25. Dube, P., Tavares, P., Lurz, R. & van Heel, M. The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J. 12, 1303–1309 (1993).

    Article  CAS  Google Scholar 

  26. Klug, A. & Crowther, R.A. Three-dimensional image reconstruction from the viewpoint of information theory. Nature 238, 435–440 (1972).

    Article  Google Scholar 

  27. van Heel, M. & Harauz, G. Resolution criteria for three dimensional reconstructions. Optik 73, 119–122 (1986).

    Google Scholar 

  28. Harauz, G. & van Heel, M. Exact filters for general geometry three dimensional reconstruction. Optik 73, 146–156 (1986).

    Google Scholar 

  29. Radermacher, M. Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. electr. Microsc. Tech. 9, 359–394 (1988).

    Article  CAS  Google Scholar 

  30. Crowther, R.A., DeRosier, D.J. & Klug, A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. Royal. Soc. London 317, 319–340 (1970).

    Article  Google Scholar 

  31. Crowther, R.A. Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Phil. Trans. Royal. Soc. Lond. B. 261, 221–230 (1971).

    Article  CAS  Google Scholar 

  32. Fuller, S.D. The T=4 envelope of Sindbis virus is organized by interactions with a complementary T=3 capsid. Cell 48, 923–934 (1987).

    Article  CAS  Google Scholar 

  33. Harauz, G. & Ottensmeyer, F.P. Direct three-dimensional reconstructions for macromolecular complexes from electron micrographs. Ultramicroscopy 12, 309–320 (1984).

    Article  Google Scholar 

  34. Crowther, R.A. et al. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 77, 943–950 (1994).

    Article  CAS  Google Scholar 

  35. Penczek, P.A., Grassucci, R.A. & Frank, J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53, 251–270 (1994).

    Article  CAS  Google Scholar 

  36. Wagenknecht, T., Grassucci, R., Frank, J., Saito, A., Inui, M. & Fleischer, S. 3-dimensional architecture of the calcium release channel/foot structure of sarcoplasmic reticulum. Nature 338, 167–170 (1989).

    Article  CAS  Google Scholar 

  37. Zorzato, F., Fujii, J. & Otsu, K. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. biol. Chem. 265, 2244–2256 (1990).

    CAS  Google Scholar 

  38. Takeshima, H. et al. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339, 439–445 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serysheva, I., Orlova, E., Chiu, W. et al. Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel. Nat Struct Mol Biol 2, 18–24 (1995). https://doi.org/10.1038/nsb0195-18

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0195-18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing