Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Mu repressor–DNA complex contains an immobilized 'wing' within the minor groove

Abstract

We have determined the solution structure of the complex between the 'winged-helix' enhancer binding domain of the Mu repressor protein and its cognate DNA site. The structure reveals an unusual use for the 'wing' which becomes immobilized upon DNA binding where it makes intermolecular hydrogen bond contacts deep within the minor groove. Although the wing is mobile in the absence of DNA, it partially negates the large entropic penalty associated with its burial by maintaining a small degree of structural order in the DNA-free state. Extensive contacts are also formed between the recognition helix and the DNA, which reads the major groove of a highly conserved region of the binding site through a single base-specific hydrogen bond and van der Waals contacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Schematic showing the operator sites (O1, O2 and O3) within the Mu transposon.
Figure 2: Representative NMR spectra of residues at the protein–DNA interface.
Figure 3: The NMR solution structure of the MuR-DBD–DNA complex.
Figure 4: Protein–DNA contacts observed in the MuR-DBD–DNA complex.
Figure 5: The wing becomes ordered in the presence of DNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mizuuchi, K. Transpostional recombination: mechanistic insights from studies of Mu and other elements. Annu. Rev. Biochem. 61, 1011–1051 (1992).

    Article  CAS  Google Scholar 

  2. Lavoie, B.D. & Chaconas, G. Transposition of phage Mu DNA. Curr. Topics Microbiol. Immunol. 204, 83–102 (1996).

    CAS  Google Scholar 

  3. Chaconas, G., Lavoie, B.D. & Watson, M.A. DNA transposition: jumping gene machine, some assembly required. Curr. Biol. 6, 817–820 (1996).

    Article  CAS  Google Scholar 

  4. Mizuuchi, M. & Mizuuchi, K. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation. Cell 58, 399–408 (1989).

    Article  CAS  Google Scholar 

  5. Leung, P.C., Teplow, D.B. & Harshey, R.M. Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer. Nature 338, 656–658 (1989).

    Article  CAS  Google Scholar 

  6. Surette, M.G., Lavoie, B.D. & Chaconas, G. Action at a distance in Mu DNA transposition: an enhancer-like element is the site of action of supercoiling relief activity by integration host factor (IHF). EMBO J. 8, 3483–3489 (1989).

    Article  CAS  Google Scholar 

  7. Surette, M.G. & Chaconas, G. The Mu transpositional enhancer can function in trans: requirement of the enhancer for synapsis but not strand cleavage. Cell 68, 1101–1108 (1992).

    Article  CAS  Google Scholar 

  8. Harshey, R.M., Getzoff, E.D., Baldwin, D.L., Miller, J.L. & Chaconas, G. Primary structure of phage Mu transposase: homology to Mu repressor. Proc. Natl. Acad. Sci. USA 82, 7676–7680 (1985).

    Article  CAS  Google Scholar 

  9. Clubb, R.T. et al. A novel class of winged helix-turn-helix protein: the DNA-binding domain of Mu transposase. Structure 2, 1041–1048 (1994).

    Article  CAS  Google Scholar 

  10. Ilangovan, U., Wojciak, J.M., Connolly, K.M. & Clubb, R.T. NMR structure and functional studies of the Mu repressor DNA-binding domain. Biochemistry 38, 8367–8376 (1999).

    Article  CAS  Google Scholar 

  11. Watson, M.A. & Chaconas, G. Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site. Cell 85, 435–445 (1996).

    Article  CAS  Google Scholar 

  12. Jiang, H., Yang, J.Y. & Harshey, R.M. Criss-crossed interactions between the enhancer and the att sites of phage Mu during DNA transposition. EMBO J. 18, 3845–3855 (1999).

    Article  CAS  Google Scholar 

  13. Mizuuchi, M., Baker, T.A. & Mizuuchi, K. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition. Cell 70, 303–311 (1992).

    Article  CAS  Google Scholar 

  14. Baker, T.A. & Mizuuchi, K. DNA-promoted assembly of the active tetramer of the Mu transposase. Genes Dev. 6, 2221–2232 (1992).

    Article  CAS  Google Scholar 

  15. Rousseau, P., Bétermier, M., Chandler, M. & Alazard, R. Interactions between the repressor and the early operator region of bacteriophage Mu. J. Biol. Chem. 271, 9739–9745 (1996).

    Article  CAS  Google Scholar 

  16. Vogel, J.L., Li, Z.J., Howe, M.M., Toussaint, A. & Higgins, N.P. Temperature-sensitive mutations in the bacteriophage Mu c repressor locate a 63-amino-acid DNA-binding domain. J. Bacteriol. 173, 6568–6577 (1991).

    Article  CAS  Google Scholar 

  17. Krause, H.M. & Higgins, N.P. Positive and negative regulation of the Mu operator by Mu repressor and Escherichia coli integration host factor. J. Biol. Chem. 261, 3744–3752 (1986).

    CAS  PubMed  Google Scholar 

  18. Rice, P. & Mizuuchi, K. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 82, 209–220 (1995).

    Article  CAS  Google Scholar 

  19. Clubb, R.T., Schumacher, S., Mizuuchi, K., Gronenborn, A.M. & Clore, G.M. Solution structure of the I gamma subdomain of the Mu end DNA-binding domain of phage Mu transposase. J. Mol. Biol. 273, 19–25 (1997).

    Article  CAS  Google Scholar 

  20. Schumacher, S. et al. Solution structure of the Mu end DNA-binding ibeta subdomain of phage Mu transposase: modular DNA recognition by two tethered domains. EMBO J. 16, 7532–7541 (1997).

    Article  CAS  Google Scholar 

  21. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995).

    Article  CAS  Google Scholar 

  22. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. & Bax, A. Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nature Struct. Biol. 4, 732–738 (1997).

    Article  CAS  Google Scholar 

  23. Pelton, J.G., Torchia, D.A., Meadow, N.D. & Roseman, S. Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques. Protein Sci. 2, 543–558 (1993).

    Article  CAS  Google Scholar 

  24. Clubb, R.T. et al. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition. Proc. Natl. Acad. Sci. USA 93, 1146–1150 (1996).

    Article  CAS  Google Scholar 

  25. Billeter, M., Guntert, P., Luginbuhl, P. & Wuthrich, K. Hydration and DNA recognition by homeodomains. Cell 85, 1057–1065 (1996).

    Article  CAS  Google Scholar 

  26. Gajiwala, K.S. & Burley, S.K. Winged helix proteins. Curr. Opin. Struct. Biol. 10, 110–116 (2000).

    Article  CAS  Google Scholar 

  27. Clark, K.L., Hurley, E.D., Lai, E. & Burley, S.K. Co-crystal structure of the HNF-3/ fork head DNA-recognition motif resembles histone H5. Nature 364, 412–419 (1993).

    Article  CAS  Google Scholar 

  28. Kodandapani, R. et al. A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 380, 456–460 (1996).

    Article  CAS  Google Scholar 

  29. Littlefield, O. & Nelson, H.C. A new use for the 'wing' of the 'winged' helix-turn-helix motif in the HSF-DNA cocrystal. Nature Struct. Biol. 6, 464–470 (1999).

    Article  CAS  Google Scholar 

  30. Gajiwala, K.S. et al. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403, 916–921 (2000).

    Article  CAS  Google Scholar 

  31. Jin, C., Marsden, I., Chen, X. & Liao, X. Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex. J. Mol. Biol. 289, 683–690 (1999).

    Article  CAS  Google Scholar 

  32. Louis, J.M., Martin, R.G., Clore, G.M. & Gronenborn, A.M. Preparation of uniformly isotope-labeled DNA oligonucleotides for NMR spectroscopy. J. Biol. Chem. 273, 2374–2378 (1998).

    Article  CAS  Google Scholar 

  33. Grzesiek, S. & Bax, A. Improved 3D triple-resonance NMR techniques applied to a 31-kDa protein. J. Magn. Reson. 96, 432–440 (1992).

    CAS  Google Scholar 

  34. Wittekind, M. & Mueller, L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha-carbon and beta-carbon resonances in proteins. J. Magn. Reson. 101, 201–205 (1993).

    Article  CAS  Google Scholar 

  35. Grzesiek, S. & Bax, A. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291–6293 (1992).

    Article  CAS  Google Scholar 

  36. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side-chain resonances in C-13/N-15-enriched proteins by isotropic mixing of C-13 magnetization. J. Magn. Reson. B 101, 114–119 (1993).

    Article  CAS  Google Scholar 

  37. Bax, A., Clore, G.M. & Gronenborn, A.M. 1H-1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J. Magn. Reson. 88, 425–431 (1990).

    CAS  Google Scholar 

  38. Ikura, I., Kay, L.E. & Bax, A. Improved three-dimensional 1H-13C-1H correlation spectroscopy of a 13C-labeled protein using constant-time evolution. J. Biomol. NMR 1, 299–304 (1991).

    Article  CAS  Google Scholar 

  39. Marion, D. et al. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry 28, 6150–6156 (1989).

    Article  CAS  Google Scholar 

  40. Vuister, G.W. & Bax, A. Quantitative J correlation ‐ a new approach for measuring homonuclear 3-bond J(H(N)H(alpha) coupling constants in N-15-enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  41. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. An alternative 3D-NMR technique for correlating backbone N-15 with side chain H-beta-resonances in larger proteins. J. Magn. Reson. 95, 636–641 (1991).

    CAS  Google Scholar 

  42. Clore, G.M., Bax, A. & Gronenborn, G.M. Stereospecific assignment of beta-methylene protons in larger proteins using 3D 15N-separated Hartman-Hahn and 13-separated rotating frame Overhauser spectroscopy. J. Biomol. NMR 1, 13–22 (1991).

    Article  CAS  Google Scholar 

  43. Fesik, S.W. & Zuiderweg, E.R.P. Heteronuclear three-dimensional NMR spectroscopy. A strategy for the simplification of homonuclear two-dimensional NMR spectra. J. Magn. Reson. 78, 588–593 (1988).

    Google Scholar 

  44. Delaglio, F. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  45. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automated computer analysis of contour diagrams. J. Magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

  46. Brünger, A.T. X-PLOR (version 3.1): a system for X-ray crystallography and NMR (Yale University Press, New Haven, Connecticut; 1993).

    Google Scholar 

  47. Wojciak, J.M., Connolly, K.M. & Clubb, R.T. NMR structure of the Tn916 integrase-DNA complex. Nature Struct. Biol. 6, 366–373 (1999).

    Article  CAS  Google Scholar 

  48. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamic simulated annealing. FEBS Lett. 229, 129–136 (1988).

    Article  Google Scholar 

  49. Lavery, R. & Sklenar, H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dyn. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

  50. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Daughdrill and the staff at the Pacific Northwest National Laboratory for assistance in operating their 800 MHz NMR spectrometer. We also thank K. Connolly for preparation of the Mu repressor expression plasmid and U. Ilangovan for useful discussions. This work was supported by grants from the US Department of Energy and National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Clubb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojciak, J., Iwahara, J. & Clubb, R. The Mu repressor–DNA complex contains an immobilized 'wing' within the minor groove. Nat Struct Mol Biol 8, 84–90 (2001). https://doi.org/10.1038/83103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83103

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing