Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site

Abstract

Ferritin is characterized by a highly conserved architecture that comprises 24 subunits assembled into a spherical cage with 432 symmetry. The only known exception is the dodecameric ferritin from Listeria innocua. The structure of Listeria ferritin has been determined to a resolution of 2.35 Å by molecular replacement, using as a search model the structure of Dps from Escherichia coli. The Listeria 12-mer is endowed with 23 symmetry and displays the functionally relevant structural features of the ferritin 24-mer, namely the negatively charged channels along the three-fold symmetry axes that serve for iron entry into the cavity and a negatively charged internal cavity for iron deposition. The electron density map shows 12 iron ions on the inner surface of the hollow core, at the interface between monomers related by two-fold axes. Analysis of the nature and stereochemistry of the iron-binding ligands reveals strong similarities with known ferroxidase sites. The L. innocua ferritin site, however, is the first described so far that has ligands belonging to two different subunits and is not contained within a four-helix bundle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monomer fold of L. innocua ferritin and comparison with related structures.
Figure 2: Structural alignment of the L. innocua ferritin, E. coli Dps and horse spleen L-chain sequences.
Figure 3: View of L. innocua ferritin along the 'ferritin-like' interface at the three-fold axis.
Figure 4: Iron-binding site in L. innocua ferritin in comparison with proven ferroxidase sites.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Harrison, P. & Arosio, P. Biochim. Biophys. Acta 1275, 161–203 (1996).

    Article  Google Scholar 

  2. Bozzi, M. et al. J. Biol. Chem. 272, 3259– 3265 (1997).

    Article  CAS  Google Scholar 

  3. Ilari, A., Savino, C., Stefanini, S., Chiancone, E. & Tsernoglou, D. Acta Crystallogr. D 55, 552–553 (1999).

    Article  CAS  Google Scholar 

  4. Ford, G.C. et al. Philos. Trans. R. Soc. Lond. B 304, 551 –565 (1984).

    Article  CAS  Google Scholar 

  5. Boyd, D., Vecoli, C., Belcher, D.M., Jain, S.K. & Drysdale, J.W. J. Biol. Chem. 260 , 11755–11761 (1985).

    CAS  PubMed  Google Scholar 

  6. Hempstead, D.P. et al. J. Mol. Biol. 268, 424– 448 (1997).

    Article  CAS  Google Scholar 

  7. Stefanini, S., Cavallo, S., Montagnini, B. & Chiancone, E. Biochem. J. 338, 71–75 ( 1999).

    Article  CAS  Google Scholar 

  8. Levi, S. et al. Biochemistry 28, 5179–5184 (1989).

    Article  CAS  Google Scholar 

  9. Sun, S., Arosio, P. Levi, S. & Chasteen, N.D. Biochemistry 32, 9362–9369 ( 1993).

    Article  CAS  Google Scholar 

  10. Le Brun, N.E. et al. Biochem. J. 312, 385– 392 (1995).

    Article  CAS  Google Scholar 

  11. Grant, R.A., Filman, D.J., Finkel, S.E., Kolter, R. & Hogle, J.M. Nature Struct. Biol. 5, 294–303 (1998).

    Article  CAS  Google Scholar 

  12. Levi, S. et al. Biochem. J. 264, 381– 388 (1989).

    Article  CAS  Google Scholar 

  13. Stefanini, S., Desideri, A., Vecchini, P., Drakenberg, T. & Chiancone E. Biochemistry 28, 378–382 (1989).

    Article  CAS  Google Scholar 

  14. Treffry, A. et al. Biochem. J. 296, 721– 728 (1993).

    Article  CAS  Google Scholar 

  15. Douglas, T. & Ripoll, D.R. Protein Sci. 7, 1083–1091 (1998).

    Article  CAS  Google Scholar 

  16. Nicholls, A., Bharadwaj, R. & Honig, B. Biophys. J. 64, A 166 (1993).

    Google Scholar 

  17. Lawson, D.M. et al. Nature 349, 541–544 (1997).

    Article  Google Scholar 

  18. Frolow, F., Kalb, A.J. (Gilboa) & Yariv, J. Nature Struct. Biol. 1, 453– 460 (1994).

    Article  CAS  Google Scholar 

  19. deMaré, F., Kurtz, D.M., Jr. & Nordlund, P. Nature Struct. Biol. 3, 539–546 (1996).

    Article  Google Scholar 

  20. Wade, V.J. et al. J. Mol. Biol. 221, 1443– 1452 (1991).

    Article  CAS  Google Scholar 

  21. Treffry, A., Zhao, Z., Quail, M.A., Guest, J.R. & Harrison, P.M. Biochemistry 36, 432– 441 (1997).

    Article  CAS  Google Scholar 

  22. Hempstead, P.D. et al. FEBS Lett. 350, 258– 262 (1994).

    Article  CAS  Google Scholar 

  23. Bonomi, F. Kurtz, D.M. Jr. & Cui, X. J. Biol. Inorg. Chem. 1, 67–72 (1996).

    Article  CAS  Google Scholar 

  24. Ottwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  Google Scholar 

  25. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  26. Cowtan, K. Newslett. Protein Crystallogr. 31, 34– 38 (1994).

    Google Scholar 

  27. Jones, A.T., Zou, Y.-J. & Kjeldgaard, M. Acta Crystallogr. A 42, 140– 149 (1994).

    Google Scholar 

  28. Tronrud, D.E., Ten Eyck, L.F. & Matthews, B.W. Acta Crystallogr. A 43, 489 –501 (1987).

    Article  Google Scholar 

  29. Laskowski, R.A., McArthur, M.W., Moss, D.S. & Thornton . J. Appl. Crystallogr. 26, 283–291 ( 1993).

    Article  CAS  Google Scholar 

  30. Brünger, A.T. J. Mol. Biol. 203, 803–816 (1998).

    Article  Google Scholar 

  31. Powell, M.J.D. Math. Program. 12, 241–254 (1977).

    Article  Google Scholar 

  32. Kraulis, P.J. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Istituto Pasteur-Fondazione Cenci Bolognetti and the Agenzia Spaziale Italiana (to D.T.) and from the Ministero per l'Università e Ricerca Scientifica e Tecnologica, Progetto Biologia Strutturale (to E.C. and D.T.). The authors are grateful to M. Bozzi for providing the purified protein, to P. Kanellopoulos for data measurement at DESY and to M. Rizzi for continuous help and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Chiancone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilari, A., Stefanini, S., Chiancone, E. et al. The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site. Nat Struct Mol Biol 7, 38–43 (2000). https://doi.org/10.1038/71236

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing