Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The bladder extracellular matrix. Part II: regenerative applications

Abstract

Bladder regeneration is a long-sought goal that could provide alternatives to cystoplasty using non-urological tissues. Regeneration might be achieved in different ways, such as seeding matrices with stem cells or conventional cells, or repopulation of the matrix by the body's own reservoir of cells. Consideration of how the extracellular matrix directs cell behavior will be crucial to the success of regenerative therapies.

Key Points

  • Matrix components are instructive to cells in the bladder and can cause changes in elastin and collagen composition

  • Context-specific mechanical deformation of particular substrates induces matrix metalloproteinase production or activation, which might be important for incorporation, proliferation, or differentiation of seeded or recruited stem cells and smooth muscle cells into a synthesized or acellular matrix

  • Stem cells have the potential to powerfully modulate or utilize the extracellular matrix in the context of appropriate tissue-specific signals

  • An increasing appreciation of the fine points of extracellular matrix composition will allow researchers to design functionally improved scaffolds

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Remodeling of SIS implants in the bladder.
Figure 2: Matrix rigidity determines the differentiation pathway of stem cells.

Similar content being viewed by others

References

  1. Bagli, D. in Progress in Paediatric Urology Vol. 4 (eds Bajpai, M. et al.) 1–10 (Penwell Publishers PLC, New Delhi, 2001).

    Google Scholar 

  2. Aitken, K. & Bagli, D. R. The bladder extracellular matrix. Part I: architecture, development and disease Nat. Rev. Urol. 6, 596–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Li, Y., Liu, W., Hayward, S. W., Cunha, G. R. & Baskin, L. S. Plasticity of the urothelial phenotype: effects of gastro-intestinal mesenchyme/stroma and implications for urinary tract reconstruction. Differentiation 66, 126–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Woodhouse, C. R., North, A. C. & Gearhart, J. P. Standing the test of time: long-term outcome of reconstruction of the exstrophy bladder. World J. Urol. 24, 244–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Badylak, S. F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 12, 367–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Santucci, R. A. & Barber, T. D. Resorbable extracellular matrix grafts in urologic reconstruction. Int. Braz. J. Urol. 31, 192–203 (2005).

    Article  PubMed  Google Scholar 

  7. Gardiner, R. A. Molecular and reconstructive urology: a coming together. World J. Surg. 24, 1163–1166 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Geutjes, P. J. et al. From molecules to matrix: construction and evaluation of molecularly defined bioscaffolds. Adv. Exp. Med. Biol. 585, 279–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Drewa, T., Adamowicz, J., Lysik, J., Polaczek, J. & Pielichowski, J. Chitosan scaffold enhances nerve regeneration within the in vitro reconstructed bladder wall: an animal study. Urol. Int. 81, 330–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Badylak, S. F., Freytes, D. O. & Gilbert, T. W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Harrington, D. A., Sharma, A. K., Erickson, B. A. & Cheng, E. Y. Bladder tissue engineering through nanotechnology. World J. Urol. 26, 315–322 (2008).

    Article  PubMed  Google Scholar 

  12. Wood, D. & Southgate, J. Current status of tissue engineering in urology. Curr. Opin. Urol. 18, 564–569 (2008).

    Article  PubMed  Google Scholar 

  13. Brown, B., Lindberg, K., Reing, J., Stolz, D. B. & Badylak, S. F. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng. 12, 519–526 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Hodde, J., Record, R., Tullius, R. & Badylak, S. Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix. Biomaterials 23, 1841–1848 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Cartwright, L. M., Shou, Z., Yeger, H. & Farhat, W. A. Porcine bladder acellular matrix porosity: impact of hyaluronic acid and lyophilization. J. Biomed. Mater. Res. A 77, 180–184 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Harrington, D. A. et al. Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J. Biomed. Mater. Res. A 78, 157–167 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Becker, C. et al. 'UroMaix' scaffolds: novel collagen matrices for application in tissue engineering of the urinary tract. Int. J. Artif. Organs 29, 764–771 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Badylak, S., Kokini, K., Tullius, B. & Whitson, B. Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J. Surg. Res. 99, 282–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Brehmer, B., Rohrmann, D., Becker, C., Rau, G. & Jackse, G. Different types of scaffolds for reconstruction of the urinary tract by tissue engineering. Urol. Int. 78, 23–29 (2007).

    Article  PubMed  Google Scholar 

  20. Yip, C. Y., Chen, J. H., Zhao, R. & Simmons, C. A. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29, 936–942 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Stankus, J. J., Freytes, D. O., Badylak, S. F. & Wagner, W. R. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J. Biomater. Sci. Polym. Ed. 19, 635–652 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han, D. & Gouma, P. I. Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine 2, 37–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Li, W. J., Mauck, R. L., Cooper, J. A., Yuan, X. & Tuan, R. S. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 40, 1686–1693 (2007).

    Article  PubMed  Google Scholar 

  24. Daamen, W. F. et al. Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering. Biomaterials 24, 4001–4009 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Thapa, A., Webster, T. J. & Haberstroh, K. M. Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion. J. Biomed. Mater. Res. A 67, 1374–1383 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Thapa, A., Miller, D. C., Webster, T. J. & Haberstroh, K. M. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 24, 2915–2926 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Adelöw, C., Segura, T., Hubbell, J. A. & Frey, P. The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials 29, 314–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Munoz-Pinto, D. J., Bulick, A. S. & Hahn, M. S. Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior. J. Biomed. Mater. Res. A 90, 303–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Rohman, G., Pettit, J. J., Isaure, F., Cameron, N. R. & Southgate, J. Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro. Biomaterials 28, 2264–2274 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Baker, S. C., Rohman, G., Southgate, J. & Cameron, N. R. The relationship between the mechanical properties and cell behavior on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials 30, 1321–1328 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Dahms, S. E., Piechota, H. J., Dahiya, R., Lue, T. F. & Tanagho, E. A. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br. J. Urol. 82, 411–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Korossis, S., Bolland, F., Southgate, J., Ingham, E. & Fisher, J. Regional biomechanical and histological characterisation of the passive porcine urinary bladder: Implications for augmentation and tissue engineering strategies. Biomaterials 30, 266–275 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Freytes, D. O., Badylak, S. F., Webster, T. J., Geddes, L. A. & Rundell, A. E. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials 25, 2353–2361 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Bolland, F. et al. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 28, 1061–1070 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lu, S. H. et al. Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa for bladder wall reconstitution. Biomaterials 26, 443–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Gilbert, T. W. et al. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials 29, 4775–4782 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y., Bharadwaj, S., Lee, S. J., Atala, A. & Zhang, Y. Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering. Biomaterials 30, 3865–3873 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Rosario, D. J. et al. Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen. Med. 3, 145–156 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Gilbert, T. W., Sellaro, T. L. & Badylak, S. F. Decellularization of tissues and organs. Biomaterials 27, 3675–3683 (2006).

    CAS  PubMed  Google Scholar 

  40. Brown, A. L., Ringuette, M. J., Prestwich, G. D., Bagli, D. J. & Woodhouse, K. A. Effects of hyaluronan and SPARC on fibroproliferative events assessed in an in vitro bladder acellular matrix model. Biomaterials 27, 3825–3835 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Brown, A. L., Srokowski, E. M., Shu, X. Z., Prestwich, G. D. & Woodhouse, K. A. Development of a model bladder extracellular matrix combining disulfide crosslinked hyaluronan with decellularized bladder tissue. Macromol. Biosci. 6, 648–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Cowan, K. N. et al. Caspases from apoptotic myocytes degrade extracellular matrix: a novel remodeling paradigm. FASEB J. 19, 1848–1850 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Simionescu, A., Philips, K. & Vyavahare, N. Elastin-derived peptides and TGF-beta1 induce osteogenic responses in smooth muscle cells. Biochem. Biophys. Res. Commun. 334, 524–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Thomas, A. H., Edelman, E. R. & Stultz, C. M. Collagen fragments modulate innate immunity. Exp. Biol. Med. (Maywood) 232, 406–411 (2007).

    CAS  Google Scholar 

  45. Upadhyay, J., Aitken, K. J., Damdar, C., Bolduc, S. & Bagli, D. J. Integrins expressed with bladder extracellular matrix after stretch injury in vivo mediate bladder smooth muscle cell growth in vitro. J. Urol. 169, 750–755 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Faye, C., Chautard, E., Olsen, B. R. & Ricard-Blum, S. The first draft of the endostatin interaction network. J. Biol. Chem. 284, 22041–22047 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Faye, C. et al. Molecular interplay between endostatin, integrins, and heparan sulfate. J. Biol. Chem. 284, 22029–22040 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gallucci, S. & Matzinger, P. Danger signals: SOS to the immune system. Curr. Opin. Immunol. 13, 114–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Rocha, L. B., Goissis, G. & Rossi, M. A. Biocompatibility of anionic collagen matrix as scaffold for bone healing. Biomaterials 23, 449–456 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Arimura, H., Ouchi, T., Kishida, A. & Ohya, Y. Preparation of a hyaluronic acid hydrogel through polyion complex formation using cationic polylactide-based microspheres as a biodegradable crosslinking agent. J. Biomater. Sci. Polym. Ed. 16, 1347–1358 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Taguchi, T., Ohtsuka, A. & Murakami, T. Light and electron microscopic detection of anionic sites in the rat choroid plexus. Arch. Histol. Cytol. 61, 243–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Harvey, S. J. & Miner, J. H. Revisiting the glomerular charge barrier in the molecular era. Curr. Opin. Nephrol. Hypertens. 17, 393–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, A. Y. et al. Immobilization of growth factors on collagen scaffolds mediated by polyanionic collagen mimetic peptides and its effect on endothelial cell morphogenesis. Biomacromolecules 9, 2929–2936 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Baumert, H. et al. Development of a seeded scaffold in the great omentum: feasibility of an in vivo bioreactor for bladder tissue engineering. Eur. Urol. 52, 884–890 (2007).

    Article  PubMed  Google Scholar 

  55. Record, R. D. et al. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials 22, 2653–2659 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Herz, D. B., Aitken, K. & Bagli, D. J. Collagen directly stimulates bladder smooth muscle cell growth in vitro: regulation by extracellular regulated mitogen activated protein kinase. J. Urol. 170, 2072–2076 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Aitken, K. J. et al. Mechanotransduction of extracellular signal-regulated kinases 1 and 2 mitogen-activated protein kinase activity in smooth muscle is dependent on the extracellular matrix and regulated by matrix metalloproteinases. Am. J. Pathol. 169, 459–470 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones, P. L., Crack, J. & Rabinovitch, M. Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J. Cell Biol. 139, 279–293 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jones, P. L., Jones, F. S., Zhou, B. & Rabinovitch, M. Induction of vascular smooth muscle cell tenascin-C gene expression by denatured type I collagen is dependent upon a beta3 integrin-mediated mitogen-activated protein kinase pathway and a 122-base pair promoter element. J. Cell Sci. 112, 435–445 (1999).

    CAS  PubMed  Google Scholar 

  60. Royce, S. G., Tan, L., Koek, A. A. & Tang, M. L. Effect of extracellular matrix composition on airway epithelial cell and fibroblast structure: implications for airway remodeling in asthma. Ann. Allergy Asthma Immunol. 102, 238–246 (2009).

    Article  PubMed  Google Scholar 

  61. Mauney, J. R., Kaplan, D. L. & Volloch, V. Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion. Biomaterials 25, 3233–3243 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Egles, C. et al. Denatured collagen modulates the phenotype of normal and wounded human skin equivalents. J. Invest. Dermatol. 128, 1830–1837 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chun, S. Y. et al. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials 28, 4251–4256 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Ingber, D. E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91, 877–887 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Parker, K. K. & Ingber, D. E. Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1267–1279 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Farhat, W. A. & Yeger, H. Does mechanical stimulation have any role in urinary bladder tissue engineering? World J. Urol. 26, 301–305 (2008).

    Article  PubMed  Google Scholar 

  67. Ekström, J., Henningsson, A. C., Henningsson, S. & Malmberg, L. Hyperplasia and hypertrophia in the denervated and distended rat urinary bladder. Acta Physiol. Scand. 122, 45–48 (1984).

    Article  PubMed  Google Scholar 

  68. Matsumoto, S., Kogan, B. A., Levin, R. M., Howard, P. S. & Macarak, E. J. Response of the fetal sheep bladder to urinary diversion. J. Urol. 169, 735–739 (2003).

    Article  PubMed  Google Scholar 

  69. Wei, W., Howard, P. S., Kogan, B. & Macarak, E. J. Altered extracellular matrix expression in the diverted fetal sheep bladder. J. Urol. 178, 1104–1107 (2007).

  70. Roby, T., Olsen, S. & Nagatomi, J. Effect of sustained tension on bladder smooth muscle cells in three-dimensional culture. Ann. Biomed. Eng. 36, 1744–1751 (2008).

    Article  PubMed  Google Scholar 

  71. Boruch, A. V., Nieponice, A., Qureshi, I. R., Gilbert, T. W. & Badylak, S. F. Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model. J. Surg. Res. doi:10.1016/j.jss.2009.02.014

    Article  Google Scholar 

  72. Long, R. A. Strain-induced remodeling of urinary bladder smooth muscle. Thesis, University of Pittsburgh (2003).

    Google Scholar 

  73. Capolicchio, G., Aitken, K. J., Gu, J. X., Reddy, P. & Bägli, D. J. Extracellular matrix gene responses in a novel ex vivo model of bladder stretch injury. J. Urol. 165, 2235–2240 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Kim, B. S. & Mooney, D. J. Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions. J. Biomech. Eng. 122, 210–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, B. S., Nikolovski, J., Bonadio, J. & Mooney, D. J. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17, 979–783 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Bulick, A. S. et al. Impact of endothelial cells and mechanical conditioning on smooth muscle cell extracellular matrix production and differentiation. Tissue Eng. Part A 15, 815–825 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Halachmi, S. et al. Role of signal transducer and activator of transcription 3 (STAT3) in stretch injury to bladder smooth muscle cells. Cell Tissue Res. 326, 149–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Matheson, L. A., Maksym, G. N., Santerre, J. P. & Labow, R. S. Differential effects of uniaxial and biaxial strain on U937 macrophage-like cell morphology: influence of extracellular matrix type proteins. J. Biomed. Mater. Res. A 81, 971–981 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Kajbafzadeh, A. M. et al. Time-dependent neovasculogenesis and regeneration of different bladder wall components in the bladder acellular matrix graft in rats. J. Surg. Res. 139, 189–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. & Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241–1246 (2006).

    Article  PubMed  Google Scholar 

  81. Chiang, H. Y., Korshunov, V. A., Serour, A., Shi, F. & Sottile, J. Fibronectin is an important regulator of flow-induced vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 29, 1074–1079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McDevitt, C. A., Wildey, G. M. & Cutrone, R. M. Transforming growth factor-beta1 in a sterilized tissue derived from the pig small intestine submucosa. J. Biomed. Mater. Res. A 67, 637–640 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Hodde, J. P., Ernst, D. M. & Hiles, M. C. An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix. J. Wound Care 14, 23–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Schultheiss, D. et al. Biological vascularized matrix (BioVaM): a new method for solving the perfusion problems in tissue engineering [German]. Urologe A 43, 1223–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Schultheiss, D. et al. Biological vascularized matrix for bladder tissue engineering: matrix preparation, reseeding technique and short-term implantation in a porcine model. J. Urol. 173, 276–280 (2005).

    Article  PubMed  Google Scholar 

  86. Noh, I. et al. Effects of crosslinking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties. Biomed. Mater. 1, 116–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Kim, J. et al. Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels. J. Mater. Sci. Mater. Med. 19, 3311–3318 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Zajac, A. L. & Discher, D. E. Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling. Curr. Opin. Cell Biol. 20, 609–615 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Even-Ram, S., Artym, V. & Yamada, K. M. Matrix control of stem cell fate. Cell 126, 645–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Bajada, S., Mazakova, I., Richardson, J. B. & Ashammakhi, N. Updates on stem cells and their applications in regenerative medicine. J. Tissue Eng. Regen. Med. 2, 169–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Breitbach, M. et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110, 1362–1369 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. de Silva, R. et al. Intracoronary infusion of autologous mononuclear cells from bone marrow or granulocyte colony-stimulating factor-mobilized apheresis product may not improve remodelling, contractile function, perfusion, or infarct size in a swine model of large myocardial infarction. Eur. Heart J. 29, 1772–1782 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Berry, M. F. et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am. J. Physiol. Heart Circ. Physiol. 290, H2196–H2203 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Orlic, D. Adult bone marrow stem cells regenerate myocardium in ischemic heart disease. Ann. NY Acad. Sci. 996, 152–157 (2003).

    Article  PubMed  Google Scholar 

  95. Perin, E. C. & Silva, G. V. Autologous cell-based therapy for ischemic heart disease: clinical evidence, proposed mechanisms of action, and current limitations. Catheter Cardiovasc. Interv. 73, 281–288 (2009).

    Article  PubMed  Google Scholar 

  96. Silva, G. V. et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111, 150–156 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Kolossov, E. et al. Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J. Exp. Med. 203, 2315–2327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kurzrock, E. A., Lieu, D. K., Degraffenried, L. A., Chan, C. W. & Isseroff, R. R. Label-retaining cells of the bladder: candidate urothelial stem cells. Am. J. Physiol. Renal Physiol. 294, F1415–F1421 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Nguyen, M. M., Lieu, D. K., deGraffenried, L. A., Isseroff, R. R. & Kurzrock, E. A. Urothelial progenitor cells: regional differences in the rat bladder. Cell Prolif. 40, 157–165 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, Y. et al. Urine derived cells are a potential source for urological tissue reconstruction. J. Urol. 180, 2226–2233 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Feil, G., Maurer, S., Nagele, U., Sievert, K. D. & Stenzl, A. Bioartificial urothelium generated from bladder washings. A future therapeutic option for reconstructive surgery [German]. Urologe A 47, 1091–1096 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Nagele, U. et al. In vitro investigations of tissue-engineered multilayered urothelium established from bladder washings. Eur. Urol. 54, 1414–1422 (2008).

    Article  PubMed  Google Scholar 

  103. Chan, K. S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA 106, 14016–14021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Drewa, T. Using hair-follicle stem cells for urinary bladder-wall regeneration. Regen. Med. 3, 939–944 (2008).

    Article  PubMed  Google Scholar 

  105. Drewa, T. et al. Comparison of growth of the follicle and mesenchymal stem cells to urothelial cells and fibroblasts on collagen scaffold [Polish]. Polim. Med. 38, 33–42 (2008).

    PubMed  Google Scholar 

  106. Toma, J. G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Anumanthan, G. et al. Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium. J. Urol. 180, 1778–1783 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shukla, D., Box, G. N., Edwards, R. A. & Tyson, D. R. Bone marrow stem cells for urologic tissue engineering. World J. Urol. 26, 341–349 (2008).

    Article  PubMed  Google Scholar 

  109. Oottamasathien, S. et al. Directed differentiation of embryonic stem cells into bladder tissue. Dev. Biol. 304, 556–566 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thomas, J. C. et al. Temporal-spatial protein expression in bladder tissue derived from embryonic stem cells. J. Urol. 180 (4 Suppl.), 1784–1789 (2008).

    Article  PubMed  Google Scholar 

  111. Jack, G. S. et al. Processed lipoaspirate cells for tissue engineering of the lower urinary tract: implications for the treatment of stress urinary incontinence and bladder reconstruction. J. Urol. 174, 2041–2045 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Long, R. A., Nagatomi, J., Chancellor, M. B. & Sacks, M. S. The role of MMP-I upregulation in the increased compliance in muscle-derived stem cell-seeded small intestinal submucosa. Biomaterials 27, 2398–2404 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Adelöw, C., Segura, T., Hubbell, J. A. & Frey, P. The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials 29, 314–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Dekel, B. et al. Human and porcine early kidney precursors as a new source for transplantation. Nat. Med. 9, 53–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Oottamasathien, S. et al. Bladder tissue formation from cultured bladder urothelium. Dev. Dyn. 235, 2795–2801 (2006).

    Article  PubMed  Google Scholar 

  116. Kinebuchi, Y. et al. Direct induction of layered tissues from mouse embryonic stem cells: potential for differentiation into urinary tract tissue. Cell Tissue Res. 331, 605–615 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Smits, A. M., van Vliet, P., Hassink, R. J., Goumans, M. J. & Doevendans, P. A. The role of stem cells in cardiac regeneration. J. Cell. Mol. Med. 9, 25–36 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Laflamme, M. A. & Murry, C. E. Regenerating the heart. Nat. Biotechnol. 23, 845–856 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Huard, J. et al. Muscle-derived cell-mediated ex vivo gene therapy for urological dysfunction. Gene Ther. 9, 1617–1626 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Mitterberger, M. et al. Can autologous myoblasts be used as a potential bulking agent? BJU Int. 102, 1731–1736 (2008).

    Article  PubMed  Google Scholar 

  122. Mitterberger, M. et al. Adult stem cell therapy of female stress urinary incontinence. Eur. Urol. 53, 169–175 (2008).

    Article  PubMed  Google Scholar 

  123. Yanagiuchi, A., Miyake, H., Nomi, M., Takenaka, A. & Fujisawa, M. Modulation of the microenvironment by growth factors regulates the in vivo growth of skeletal myoblasts. BJU Int. 103, 1569–1573 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  125. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Adelöw, C. A. M. & Frey, P. Synthetic hydrogel matrices for guided bladder tissue regeneration. Methods Mol. Med. 140, 125–140 (2007).

    Article  PubMed  Google Scholar 

  127. Winer, J. P., Janmey, P. A., McCormick, M. E. & Funaki, M. Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng. Part A 15, 147–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Ross, J. J. et al. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J. Clin. Invest. 116, 3139–3149 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Anderson, H. C. The role of cells versus matrix in bone induction. Connect. Tissue Res. 24, 3–12 (1990).

    Article  CAS  PubMed  Google Scholar 

  130. Chen, J. H., Yip, C. Y., Sone, E. D. & Simmons, C. A. Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am. J. Pathol. 174, 1109–1119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Furber, J. D. Extracellular glycation crosslinks: prospects for removal. Rejuvenation Res. 9, 274–278 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Cozzolino, D. J., Cendron, M., DeVore, D. P., Hoopes, P. J. The biological behavior of autologous collagen-based extracellular matrix injected into the rabbit bladder wall. Neurourol. Urodyn. 18, 487–495 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Robert, L., Jacob, M. P. & Labat-Robert, J. Cell-matrix interactions in the genesis of arteriosclerosis and atheroma. Effect of aging. Ann. NY Acad. Sci. 673, 331–341 (1992).

    Article  CAS  PubMed  Google Scholar 

  134. Dozmorov, M. G., Kropp, B. P., Hurst, R. E., Cheng, E. Y. & Lin, H. K. Differentially expressed gene networks in cultured smooth muscle cells from normal and neuropathic bladder. J. Smooth Muscle Res. 43, 55–72 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Discussions with Drs Woodhouse, Hinek and Miller, and members of the Developmental & Stem Cell Biology department of the Hospital for Sick Children Research Institute, facilitated our understanding of the area. K. J. Aitken was supported by The Canadian Institutes of Health Research training programme in regenerative medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darius J. Bägli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Stem cell types and their potential: the road to differentiation in the bladder (PPT 194 kb)

Supplementary Table 1

ECM components and their functions (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aitken, K., Bägli, D. The bladder extracellular matrix. Part II: regenerative applications. Nat Rev Urol 6, 612–621 (2009). https://doi.org/10.1038/nrurol.2009.202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing