Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inherited cerebrorenal syndromes

Abstract

Abnormalities in the central nervous system and renal function are seen together in a variety of congenital syndromes. This Review examines the clinical presentation and the genetic basis of several such syndromes. The X-linked oculocerebrorenal syndrome of Lowe is characterized by developmental delay, blindness, renal tubular dysfunction, and progressive renal failure. This syndrome results from mutations in the OCRL gene, which encodes a phosphatase involved in endosomal trafficking. Mutations in OCRL also occur in Dent disease, which has a milder disease phenotype than Lowe syndrome. Patients with Joubert syndrome have cerebellar ataxia, pigmentary retinopathy, and nephronophthisis. Joubert syndrome is a genetically heterogeneous condition associated with mutations in at least five genes that encode ciliary proteins. Bardet–Biedl syndrome is a clinically variable condition associated with learning disabilities, progressive visual loss, obesity, polydactyly, hypogonadism, and cystic and fibrotic renal changes that can lead to renal failure. Most of the 12 genes mutated in Bardet–Biedl syndrome are also involved in ciliary function, as are the genes implicated in other 'ciliopathies' with similar phenotypes, including Meckel syndrome.

Key Points

  • A number of rare conditions with defined genetic abnormalities are characterized by a set of specific cerebrorenal symptoms including Lowe syndrome, Joubert syndrome, and Bardet–Biedl syndrome

  • Lowe syndrome is an X-linked disorder that results from mutations in OCRL, a gene that encodes a phosphatase involved in endosomal trafficking

  • Boys with Lowe syndrome have Fanconi-type renal tubular dysfunction and progressive renal failure with developmental delay and blindness

  • Joubert syndrome is a genetically heterogeneous ciliopathy; affected patients can display cerebellar ataxia, pigmentary retinopathy and nephronophthisis

  • Bardet–Biedl syndrome is a clinically variable and genetically heterogeneous ciliopathy; patients can present with cystic and fibrotic renal changes that can lead to renal failure, along with learning disabilities, progressive vision loss, obesity, and hypogonadism

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discoid cataract in an infant with Lowe syndrome.
Figure 2: A boy with the typical facies of Lowe syndrome.
Figure 3: Role of OCRL-1 in endosome and trans-Golgi network trafficking.
Figure 4: The 'molar tooth sign' associated with Joubert syndrome.
Figure 5: A girl with wide midface and upward nasal displacement characteristic of Bardet–Biedl syndrome.

Similar content being viewed by others

References

  1. Lowe, C. U., Terrey, M. & MacLachlan, E. A. Organic-aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation; a clinical entity. AMA Am. J. Dis. Child. 83, 164–184 (1952).

    CAS  PubMed  Google Scholar 

  2. UK Lowe Syndrome Trust [online], (2009).

  3. Gaary, E. A., Rawnsley, E., Marin-Padilla, J. M., Morse, C. L. & Crow, H. C. In utero detection of fetal cataracts. J. Ultrasound Med. 12, 234–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Lewis, R. A., Nussbaum, R. L. & Brewer, E. D. Lowe Syndrome, GeneReviews [online], (2007).

    Google Scholar 

  5. McSpadden, K., Dolinsky, Z. & Schroerlucke, K. Report on the Lowe's Syndrome Comprehensive Survey. (Lowe Syndrome Association, West Lafayette, 1991).

    Google Scholar 

  6. Walton, D. S., Katsavounidou, G. & Lowe, C. U. Glaucoma with the oculocerebrorenal syndrome of Lowe. J. Glaucoma 14, 181–185 (2005).

    Article  PubMed  Google Scholar 

  7. Kenworthy, L., Park, T. & Charnas, L. R. Cognitive and behavioral profile of the oculocerebrorenal syndrome of Lowe. Am. J. Med. Genet. 46, 297–303 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. McSpadden, K. Living with Lowe's Syndrome: A Guide for Families, Friends, and Professionals. (ed. Lowe Syndrome Association) (2000).

    Google Scholar 

  9. Bockenhauer, D. et al. Renal phenotype in Lowe Syndrome: a selective proximal tubular dysfunction. Clin. J. Am. Soc. Nephrol. 3, 1430–1436 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scheinman, S. J. in Genetic Diseases of the Kidney (eds Lifton, R., Somlo, S., Giebisch, G. & Seldin, D.) 213–226 (Elsevier, New York, 2009).

    Book  Google Scholar 

  11. Kleta, R. Fanconi or not Fanconi? Lowe syndrome revisited. Clin. J. Am. Soc. Nephrol. 3, 1244–1245 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Laube, G. F., Russell-Eggitt, I. M. & van't Hoff, W. G. Early proximal tubular dysfunction in Lowe's syndrome. Arch. Dis. Child. 89, 479–480 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vilasi, A. et al. Combined proteomic and metabonomic studies in three genetic forms of the renal Fanconi syndrome. Am. J. Physiol. Renal Physiol. 293, F456–F467 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Norden, A. G., Gardner, S. C., van' t Hoff, W. & Unwin, R. J. Lysosomal enzymuria is a feature of hereditary Fanconi syndrome and is related to elevated CI-mannose-6-P-receptor excretion. Nephrol. Dial. Transplant. 23, 2795–2800 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Charnas, L. R., Bernardini, I., Rader, D., Hoeg, J. M. & Gahl, W. A. Clinical and laboratory findings in the oculocerebrorenal syndrome of Lowe, with special reference to growth and renal function. N. Engl. J. Med. 324, 1318–1325 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Sliman, G. A., Winters, W. D., Shaw, D. W. & Avner, E. D. Hypercalciuria and nephrocalcinosis in the oculocerebrorenal syndrome. J. Urol. 153, 1244–1246 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Norden, A. G. et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int. 60, 1885–1892 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Nandedkar, M. A., Minus, H. & Nandedkar, M. A. Eruptive vellus hair cysts in a patient with Lowe syndrome. Pediatr. Dermatol. 21, 54–57 (2004).

    Article  PubMed  Google Scholar 

  19. Athreya, B. H. et al. Arthropathy of Lowe's (oculocerebrorenal) syndrome. Arthritis Rheum. 26, 728–735 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Charnas, L. R. & Gahl, W. A. The oculocerebrorenal syndrome of Lowe. Adv. Pediatr. 38, 75–107 (1991).

    CAS  PubMed  Google Scholar 

  21. Attree, O. et al. The Lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358, 239–242 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Lowe, M. Structure and function of the Lowe syndrome protein OCRL1. Traffic 6, 711–719 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Choudhury, R. et al. Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol. Biol. Cell 16, 3467–3479 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jänne, P. A. et al. Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J. Clin. Invest. 101, 2042–2053 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Erdmann, K. S. et al. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev. Cell 13, 377–390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suchy, S. F. & Nussbaum, R. L. The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am. J. Hum. Genet. 71, 1420–1427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCrea, H. J. et al. All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding. Biochem. Biophys. Res. Commun. 369, 493–499 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Norden, A. G. et al. Urinary megalin deficiency implicates abnormal tubular endocytic function in Fanconi syndrome. J. Am. Soc. Nephrol. 13, 125–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Faucherre, A. et al. Lowe syndrome protein Ocrl1 is translocated to membrane ruffles upon Rac GTPase activation: a new perspective on Lowe syndrome pathophysiology. Hum. Mol. Genet. 14, 1441–1448 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Shrimpton, A. E. et al. OCRL1 mutations in Dent 2 patients suggest mechanism for phenotypic variability. Nephron Physiology 112, 27–36 (2009).

    Article  Google Scholar 

  31. Utsch, B. et al. Novel OCRL1 mutations in patients with the phenotype of Dent disease. Am. J. Kidney Dis. 48, 942e1–942e14 (2006).

    Article  Google Scholar 

  32. Monnier, N., Satre, V., Lerouge, E., Berthoin, F. & Lunardi, J. OCRL1 mutation analysis in French Lowe syndrome patients: implications for molecular diagnosis strategy and genetic counseling. Hum. Mutat. 16, 157–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Satre, V. et al. Characterization of a germline mosaicism in families with Lowe syndrome, and identification of seven novel mutations in the OCRL1 gene. Am. J. Hum. Genet. 65, 68–76 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hildebrandt, F. & Zhou, W. Nephronophthisis-associated ciliopathies. J. Am. Soc. Nephrol. 18, 1855–1871 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Tobin, J. L. & Beales, P. L. Bardet-Biedl syndrome: beyond the cilium. Pediatr. Nephrol. 22, 926–936 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huangfu, D. & Anderson, K. V. Cilia and hedgehog responsiveness in the mouse. Proc. Natl Acad. Sci. USA 102, 11325–11330 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, A., Wang, B. & Niswander, L. E. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of the Gli transcription factors. Development 132, 3103–3111 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Nauli, S. M. et al. Pllycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Gerdes, J. M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet. 39, 1350–1360 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jho, E. H. et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Germino, G. G. Linking cilia to Wnts. Nat. Genet. 37, 455–457 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Ong, A. C. & Harris, P. C. Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int. 67, 1234–1247 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Mykytyn, K. et al. Bardet–Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc. Natl Acad. Sci. USA 101, 8664–8669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tobin, J. L. et al. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung's disease in Bardet–Biedl syndrome. Proc. Natl Acad. Sci. USA 105, 6714–6719 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Valente, E. M., Brancati, F. & Dallapiccola, B. Genotypes and phenotypes of Joubert syndrome and related disorders. Eur. J. Med. Genet. 51, 1–23 (2008).

    Article  PubMed  Google Scholar 

  47. Parisi, M. A., Doherty, D., Chance, P. F. & Glass, I. A. Joubert syndrome (and related disorders) (OMIM 213300). Eur. J. Hum. Genet. 15, 511–521 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Maria, B. L., Boltshauser, E., Palmer, S. C. & Tran, T. X. Clinical features and revised diagnostic criteria in Joubert syndrome. J. Child. Neurol. 14, 583–590 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Raynes, H. R., Shanske, A., Goldberg, S., Burde, R. & Rapin, I. Joubert syndrome: monozygotic twins with discordant phenotypes. J. Child. Neurol. 14, 649–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Steinlin, M., Schmid, M., Landau, K. & Boltshauser, E. Follow-up in children with Joubert syndrome. Neuropediatrics 28, 204–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Braddock, B. A., Farmer, J. E., Deidrick, K. M., Iverson, J. M. & Maria, B. L. Oromotor and communication findings in joubert syndrome: further evidence of multisystem apraxia. J. Child. Neurol. 21, 160–163 (2006).

    Article  PubMed  Google Scholar 

  52. Haider, N. B., Carmi, R., Shalev, H., Sheffield, V. C. & Landau, D. A Bedouin kindred with infantile nephronophthisis demonstrates linkage to chromosome 9 by homozygosity mapping. Am. J. Hum. Genet. 63, 1404–1410 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Omran, H. et al. Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venezuelan pedigree. Am. J. Hum. Genet. 66, 118–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Gretz, N., Schärer, K., Waldherr, R. & Strauch, M. Rate of deterioration of renal function in juvenile nephronophthisis. Pediatr. Nephrol. 3, 56–60 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Gleeson, J. G. et al. Molar tooth sign of the midbrain-hindbrain junction: occurrence in multiple distinct syndromes. Am. J. Med. Genet. A 125A, 125–134 (2004).

    Article  PubMed  Google Scholar 

  56. Harris, P. C. Genetic complexity in Joubert syndrome and related disorders. Kidney Int. 72, 1421–1423 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Parisi, M. A. et al. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J. Med. Genet. 43, 334–339 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Valente, E. M. et al. AHI1 gene mutations cause specific forms of Joubert syndrome-related disorders. Ann. Neurol. 59, 527–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Sayer, J. A. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 38, 674–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Delous, M. et al. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat. Genet. 39, 875–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Alexiev, B. A., Lin, X., Sun, C. C. & Brenner, D. S. Meckel–Gruber syndrome: pathologic manifestations, minimal diagnostic criteria, and differential diagnosis. Arch. Pathol. Lab. Med. 130, 1236–1238 (2006).

    PubMed  Google Scholar 

  62. Ross, A. & Beales, P. L. Bardet–Biedl Syndrome. GeneReviews [online], (2009).

    Google Scholar 

  63. Beales, P. L., Elcioglu, N., Woolf, A. S., Parker, D. & Flinter, F. A. New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J. Med. Genet. 36, 437–446 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Klein, D. & Ammann, F. The syndrome of Laurence–Moon–Bardet–Biedl and allied diseases in Switzerland. Clinical, genetic and epidemiological studies. J. Neurol. Sci. 9, 479–513 (1969).

    Article  CAS  PubMed  Google Scholar 

  65. Grace, C. et al. Energy metabolism in Bardet-Biedl syndrome. Int. J. Obes. Relat. Metab. Disord. 27, 1319–1324 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Cassart, M., Eurin, D., Didier, F., Guibaud, L. & Avni, E. F. Antenatal renal sonographic anomalies and postnatal follow-up of renal involvement in Bardet–Biedl syndrome. Ultrasound Obstet. Gynecol. 24, 51–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Harnett, J. D. et al. The spectrum of renal disease in Laurence–Moon–Biedl syndrome. N. Engl. J. Med. 319, 615–618 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. Alton, D. J. & McDonald, P. Urographic findings in the Bardet–Biedl syndrome, formerly the Laurence–Moon–Biedl syndrome. Radiology 109, 659–663 (1973).

    Article  CAS  PubMed  Google Scholar 

  69. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Marshall, W. F. & Nonaka, S. Cilia: tuning in to the cell's antenna. Curr. Biol. 16, R604–R614 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Karmous-Benailly, H. et al. Antenatal presentation of Bardet–Biedl syndrome may mimic Meckel syndrome. Am. J. Hum. Genet. 76, 493–504 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Loken, A. C., Hanssen, O., Halvorsen, S. & Jolster, N. J. Hereditary renal dysplasia and blindness. Acta Paediatr. 50, 177–184 (1961).

    Article  CAS  PubMed  Google Scholar 

  74. Caridi, G. et al. Clinical and molecular heterogeneity of juvenile nephronophthisis in Italy: insights from molecular screening. Am. J. Kidney Dis. 35, 44–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Otto, E. A. et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior–Loken syndrome and interacts with RPGR and calmodulin. Nat. Genet. 37, 282–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Betz, R. et al. Children with ocular motor apraxia type Cogan carry deletions in the gene (NPHP1) for juvenile nephronophthisis. J. Pediatr. 136, 828–831 (2000).

    CAS  PubMed  Google Scholar 

  77. Sargent, M. A., Poskitt, K. J. & Jan, J. E. Congenital ocular motor apraxia: imaging findings. AJNR Am. J. Neuroradiol. 18, 1915–1922 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Thomas welch for helpful comments and to Michele O'Brien for manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Scheinman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schurman, S., Scheinman, S. Inherited cerebrorenal syndromes. Nat Rev Nephrol 5, 529–538 (2009). https://doi.org/10.1038/nrneph.2009.124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing