Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein palmitoylation: a regulator of neuronal development and function

Key Points

  • Palmitate is a 16-carbon saturated fatty acid that is attached to proteins post-translationally. This modification, which is called palmitoylation, increases protein hydrophobicity and facilitates protein interactions with lipid bilayers, and it can influence protein sorting and function.

  • The thioester bond that links protein to palmitate is labile and reversible, and specific physiological stimuli dynamically alter protein palmitoylation levels, providing an important mechanism for regulating cell development and signalling.

  • Recent work has shown that palmitoylation is important for the regulation of neuronal development and synaptic functions. It has been implicated in processes that include protein sorting, axonal development, presynaptic signalling, G-protein signalling, ion channel clustering and postsynaptic plasticity.

  • Rhodopsin was one of the first neuronal proteins to be found to contain covalently attached palmitate, and many others have since been identified. These include several G-protein-coupled receptors (GPCRs), growth-associated protein 43 (GAP43) and postsynaptic density protein 95 (PSD95).

  • The enzymes that mediate the palmitoylation of cellular proteins remain largely unknown, and non-enzymatic palmitoylation of certain protein cysteines has been observed in vitro. However, recent studies have identified the acyl-transferase that palmitoylates the hedgehog family of secreted glycoproteins, which can affect the development of neurons.

  • No common consensus sequence for palmitoylation has been identified, but some patterns have emerged. For example, for transmembrane proteins such as GPCRs, synaptotagmin and synaptobrevin, palmitoylation often occurs at cytosolic cysteine residues that are adjacent to the final transmembrane domain.

  • Further understanding of the roles of protein palmitoylation will require a more comprehensive identification of proteins that contain this modification. It will also be important to identify the family of enzymes that mediate the addition and removal of protein palmitate.

Abstract

Palmitoylation — the post-translational modification of proteins with the lipid palmitate — has emerged as an important mechanism for regulating protein trafficking and function. Classic studies showed that palmitoylation targets many signalling enzymes to specialized lipid microdomains on the cytosolic face of the plasma membrane, thereby directing their integration into specific transduction pathways. More recent work shows that palmitate reversibly modifies numerous classes of neuronal proteins, including neurotransmitter receptors, synaptic scaffolding proteins and secreted signalling molecules. This review highlights recent evidence that protein palmitoylation regulates trafficking and signalling pathways that are important for brain development and synaptic transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palmitoylation-regulated protein sorting.
Figure 2: Dynamic palmitate turnover regulates signalling by GPCR pathways.
Figure 3: Palmitoylation of proteins regulates synaptic transmission.
Figure 4: Dynamic protein palmitoylation regulates clustering of AMPA receptors at the synapse.

Similar content being viewed by others

References

  1. Casey, P. J. Lipid modifications of G proteins. Curr. Opin. Cell Biol. 6, 219–225 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Dunphy, J. T. & Linder, M. E. Signalling functions of protein palmitoylation. Biochim. Biophys. Acta 1436, 245–261 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Resh, M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Wilcox, C., Hu, J. S. & Olson, E. N. Acylation of proteins with myristic acid occurs cotranslationally. Science 238, 1275–1278 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Johnson, D. R., Bhatnagar, R. S., Knoll, L. J. & Gordon, J. I. Genetics and biochemical studies of protein N-myristoylation. Annu. Rev. Biochem. 63, 869–914 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Magee, A. I. & Courtneidge, S. A. Two classes of fatty acid acylated proteins exist in eukaryotic cells. EMBO J. 4, 1137–1144 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McIlhinney, R. A., Pelly, S. J., Chadwick, J. K. & Cowley, G. P. Studies on the attachment of myristic and palmitic acid to cell proteins in human squamous carcinoma cell lines: evidence for two pathways. EMBO J. 4, 1145–1152 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hallak, H. et al. Covalent binding of arachidonate to G protein α subunits of human platelets. J. Biol. Chem. 269, 4713–4716 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Liang, X., Lu, Y., Neubert, T. A. & Resh, M. D. Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. J. Biol. Chem. 277, 33032–33040 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Milligan, G., Parenti, M. & Magee, A. I. The dynamic role of palmitoylation in signal transduction. Trends Biochem. Sci. 20, 181–187 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Mumby, S. M. Reversible palmitoylation of signaling proteins. Curr. Opin. Cell Biol. 9, 148–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Ross, E. M. Protein modification. Palmitoylation in G-protein signaling pathways. Curr. Biol. 5, 107–109 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Hess, D. T., Patterson, S. I., Smith, D. S. & Skene, J. H. Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. Nature 366, 562–565 (1993).This paper revealed a potential role for nitric oxide in the regulation of neurite outgrowth and growth cone remodelling through the modulation of protein palmitoylation.

    Article  CAS  PubMed  Google Scholar 

  15. Pepinsky, R. B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Chamoun, Z. et al. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293, 2080–2084 (2001).This study identified the palmitoyltransferase Ski, which catalyses the palmitoylation of hedgehog in the secretory pathway.

    Article  CAS  PubMed  Google Scholar 

  17. Hess, D. T., Slater, T. M., Wilson, M. C. & Skene, J. H. The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J. Neurosci. 12, 4634–4641 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Washbourne, P. et al. Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting. Biochem. J. 357, 625–634 (2001).This study showed that the palmitoylated cysteines of SNAP25 are required for efficient SNARE-complex dissociation and the regulation of vesicle exocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bizzozero, O. A. The mechanism and functional roles of protein palmitoylation in the nervous system. Neuropediatrics 28, 23–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Topinka, J. R. & Bredt, D. S. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel, Kv1.4. Neuron 20, 125–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Gray, P. C. et al. Primary structure and function of an A kinase anchoring protein associated with calcium channels. Neuron 20, 1017–1026 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. DeSouza, S., Fu, J., States, B. A. & Ziff, E. B. Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. J. Neurosci. 22, 3493–3503 (2002).The authors reported that two isoforms of ABP are differentially palmitoylated, and that palmitoylation mediates targeting of the protein to dendritic spines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O'Brien, P. J. & Zatz, M. Acylation of bovine rhodopsin by [3H]palmitic acid. J. Biol. Chem. 259, 5054–5057 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Papac, D. I., Thornburg, K. R., Bullesbach, E. E., Crouch, R. K. & Knapp, D. R. Palmitylation of a G-protein coupled receptor. Direct analysis by tandem mass spectrometry. J. Biol. Chem. 267, 16889–16894 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Bouvier, M. et al. Palmitoylation of G-protein-coupled receptors: a dynamic modification with functional consequences. Biochem. Soc. Trans. 23, 116–120 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Olson, E. N., Glaser, L. & Merlie, J. P. α and β subunits of the nicotinic acetylcholine receptor contain covalently bound lipid. J. Biol. Chem. 259, 5364–5367 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt, J. W. & Catterall, W. A. Palmitylation, sulfation, and glycosylation of the α subunit of the sodium channel. Role of post-translational modifications in channel assembly. J. Biol. Chem. 262, 13713–13723 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Murray, B. A., Hoffman, S. & Cunningham, B. A. Molecular features of cell–cell adhesion molecules. Prog. Brain Res. 71, 35–45 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Degtyarev, M. Y., Spiegel, A. M. & Jones, T. L. The G protein αs subunit incorporates [3H]palmitic acid and mutation of cysteine-3 prevents this modification. Biochemistry 32, 8057–8061 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Linder, M. E. et al. Lipid modifications of G proteins: α subunits are palmitoylated. Proc. Natl Acad. Sci. USA 90, 3675–3679 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wedegaertner, P. B., Chu, D. H., Wilson, P. T., Levis, M. J. & Bourne, H. R. Palmitoylation is required for signaling functions and membrane attachment of Gqα and Gsα. J. Biol. Chem. 268, 25001–25008 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Shenoy-Scaria, A. M., Dietzen, D. J., Kwong, J., Link, D. C. & Lublin, D. M. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J. Cell Biol. 126, 353–363 (1994).This study showed that palmitoylation is crucial for p59fyn but not for p60src partitioning into Triton-X-100-insoluble complexes that contain caveolae.

    Article  CAS  PubMed  Google Scholar 

  33. Robbins, S. M., Quintrell, N. A. & Bishop, J. M. Myristoylation and differential palmitoylation of the HCK protein-tyrosine kinases govern their attachment to membranes and association with caveolae. Mol. Cell. Biol. 15, 3507–3515 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hancock, J. F., Magee, A. I., Childs, J. E. & Marshall, C. J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Skene, J. H. & Virag, I. Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J. Cell Biol. 108, 613–624 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Berthiaume, L. & Resh, M. D. Biochemical characterization of a palmitoyl acyltransferase activity that palmitoylates myristoylated proteins. J. Biol. Chem. 270, 22399–22405 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Dunphy, J. T., Greentree, W. K., Manahan, C. L. & Linder, M. E. G-protein palmitoyltransferase activity is enriched in plasma membranes. J. Biol. Chem. 271, 7154–7159 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Das, A. K., Dasgupta, B., Bhattacharya, R. & Basu, J. Purification and biochemical characterization of a protein-palmitoyl acyltransferase from human erythrocytes. J. Biol. Chem. 272, 11021–11025 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Ueno, K. & Suzuki, Y. p260/270 expressed in embryonic abdominal leg cells of Bombyx mori can transfer palmitate to peptides. J. Biol. Chem. 272, 13519–13526 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, L., Dudler, T. & Gelb, M. H. Purification of a protein palmitoyltransferase that acts on H-Ras protein and on a C-terminal N-Ras peptide. J. Biol. Chem. 271, 23269–23276 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, L., Dudler, T. & Gelb, M. H. Purification of a protein palmitoyltransferase that acts on H-Ras protein and on a C-terminal N-Ras peptide. J. Biol. Chem. 274, 3252 (1999).

    Article  CAS  Google Scholar 

  42. Ross, N. W. & Braun, P. E. Acylation in vitro of the myelin proteolipid protein and comparison with acylation in vivo: acylation of a cysteine occurs nonenzymatically. J. Neurosci. Res. 21, 35–44 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. O'Brien, P. J., St Jules, R. S., Reddy, T. S., Bazan, N. G. & Zatz, M. Acylation of disc membrane rhodopsin may be nonenzymatic. J. Biol. Chem. 262, 5210–5215 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Bano, M. C., Jackson, C. S. & Magee, A. I. Pseudo-enzymatic S-acylation of a myristoylated yes protein tyrosine kinase peptide in vitro may reflect non-enzymatic S-acylation in vivo. Biochem J. 330, 723–731 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duncan, J. A. & Gilman, A. G. Autoacylation of G protein α subunits. J. Biol. Chem. 271, 23594–23600 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Leventis, R., Juel, G., Knudsen, J. K. & Silvius, J. R. Acyl-CoA binding proteins inhibit the nonenzymic S-acylation of cysteinyl-containing peptide sequences by long-chain acyl-CoAs. Biochemistry 36, 5546–5553 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Kohtz, J. D. et al. N-terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons. Development 128, 2351–2363 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, J. D. et al. An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development. Dev. Biol. 233, 122–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Jung, V., Chen, L., Hofmann, S. L., Wigler, M. & Powers, S. Mutations in the SHR5 gene of Saccharomyces cerevisiae suppress Ras function and block membrane attachment and palmitoylation of Ras proteins. Mol. Cell. Biol. 15, 1333–1342 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lobo, S., Greentree, W. K., Linder, M. E. & Deschenes, R. J. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J. Biol. Chem. 21 August 2002 (manuscript M206573200). This paper reported the identification of a palmitoyl-transferase complex that mediates the palmitoylation of Ras in yeast.

  51. ten Brinke, A. et al. Structural requirements for palmitoylation of surfactant protein C precursor. Biochem J. 361, 663–671 (2002).This work showed that the palmitoylation of surfactant protein C relies on specific sequence motifs and on the probability that the cysteine is in the vicinity of the membrane surface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mumby, S. M., Kleuss, C. & Gilman, A. G. Receptor regulation of G-protein palmitoylation. Proc. Natl Acad. Sci. USA 91, 2800–2804 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, Y., Fisher, D. A. & Storm, D. R. Analysis of the palmitoylation and membrane targeting domain of neuromodulin (GAP-43) by site-specific mutagenesis. Biochemistry 32, 10714–10719 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. El-Husseini, A. E. et al. Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J. Cell Biol. 148, 159–172 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Berger, M. & Schmidt, M. F. Protein fatty acyltransferase is located in the rough endoplasmic reticulum. FEBS Lett. 187, 289–294 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Olson, E. N. & Spizz, G. Fatty acylation of cellular proteins. Temporal and subcellular differences between palmitate and myristate acylation. J. Biol. Chem. 261, 2458–2466 (1986).

    Article  CAS  PubMed  Google Scholar 

  57. Dolci, E. D. & Palade, G. E. The biosynthesis and fatty acid acylation of the murine erythrocyte sialoglycoproteins. J. Biol. Chem. 260, 10728–10735 (1985).

    Article  CAS  PubMed  Google Scholar 

  58. El-Husseini, A. E. et al. Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108, 849–863 (2002).This study showed that palmitate turnover on PSD95 regulates the synaptic clustering of PSD95. This process also regulates the accumulation of synaptic AMPA-type glutamate receptors.

    Article  CAS  Google Scholar 

  59. McLaughlin, R. E. & Denny, J. B. Palmitoylation of GAP-43 by the ER–Golgi intermediate compartment and Golgi apparatus. Biochim. Biophys. Acta 1451, 82–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. van't Hof, W. & Resh, M. D. Rapid plasma membrane anchoring of newly synthesized p59fyn: selective requirement for NH2-terminal myristoylation and palmitoylation at cysteine-3. J. Cell Biol. 136, 1023–1035 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Peitzsch, R. M. & McLaughlin, S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry 32, 10436–10443 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. McCabe, J. B. & Berthiaume, L. G. N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae. Mol. Biol. Cell 12, 3601–3617 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lisanti, M. P. et al. Caveolae, transmembrane signalling and cellular transformation. Mol. Membr. Biol. 12, 121–124 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Schroeder, R., London, E. & Brown, D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl Acad. Sci. USA 91, 12130–12134 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prior, I. A. et al. GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nature Cell Biol. 3, 368–375 (2001).Palmitoylation-dependent protein segregation into lipid rafts underlies functional differences between two otherwise very similar isoforms of Ras.

    Article  CAS  PubMed  Google Scholar 

  68. Rodgers, W., Crise, B. & Rose, J. K. Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol. Cell. Biol. 14, 5384–5391 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Perez, A. S. & Bredt, D. S. The N-terminal PDZ-containing region of postsynaptic density-95 mediates association with caveolar-like lipid domains. Neurosci. Lett. 258, 121–123 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Arni, S., Keilbaugh, S. A., Ostermeyer, A. G. & Brown, D. A. Association of GAP-43 with detergent-resistant membranes requires two palmitoylated cysteine residues. J. Biol. Chem. 273, 28478–28485 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Wu, C., Butz, S., Ying, Y. & Anderson, R. G. Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J. Biol. Chem. 272, 3554–3559 (1997).The authors reported the isolation of a membrane domain from neuronal plasma membranes that has the biochemical characteristics of caveolae. This domain is similar to lipid rafts present in non-neuronal cells, and is highly enriched in several palmitoylated proteins, such as Fyn and Ras.

    Article  CAS  PubMed  Google Scholar 

  73. Dotti, C. G. & Simons, K. Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. Cell 62, 63–72 (1990).

    Article  CAS  PubMed  Google Scholar 

  74. Ledesma, M. D., Brugger, B., Bunning, C., Wieland, F. T. & Dotti, C. G. Maturation of the axonal plasma membrane requires upregulation of sphingomyelin synthesis and formation of protein–lipid complexes. EMBO J. 18, 1761–1771 (1999).The interaction of proteins with sphingolipid–cholesterol rafts is important for targeting proteins to axons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dotti, C. G., Parton, R. G. & Simons, K. Polarized sorting of glypiated proteins in hippocampal neurons. Nature 349, 158–161 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Ledesma, M. D., Simons, K. & Dotti, C. G. Neuronal polarity: essential role of protein–lipid complexes in axonal sorting. Proc. Natl Acad. Sci. USA 95, 3966–3971 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. El-Husseini, A. E., Craven, S. E., Brock, S. C. & Bredt, D. S. Polarized targeting of peripheral membrane proteins in neurons. J. Biol. Chem. 276, 44984–44992 (2001).Not all palmitoylation motifs behave in a similar fashion in neurons. Instead, specific palmitoylated motifs that are characterized by two adjacent cysteines and nearby basic residues mediate axonal targeting and protein sorting to lipid rafts.

    Article  CAS  Google Scholar 

  78. Strittmatter, S. M., Valenzuela, D., Kennedy, T. E., Neer, E. J. & Fishman, M. C. G0 is a major growth cone protein subject to regulation by GAP-43. Nature 344, 836–841 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Benowitz, L. I. & Routtenberg, A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20, 84–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Zuber, M. X., Strittmatter, S. M. & Fishman, M. C. A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43. Nature 341, 345–348 (1989).The authors found that the palmitoylated amino terminus of GAP43 acts to target the protein to growth cone membranes.

    Article  CAS  PubMed  Google Scholar 

  81. Sudo, Y., Valenzuela, D., Beck-Sickinger, A. G., Fishman, M. C. & Strittmatter, S. M. Palmitoylation alters protein activity: blockade of Go stimulation by GAP-43. EMBO J. 11, 2095–2102 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baker, L. P. & Storm, D. R. Dynamic palmitoylation of neuromodulin (GAP-43) in cultured rat cerebellar neurons and mouse N1E-115 cells. Neurosci. Lett. 234, 156–160 (1997).In metabolic labelling studies of cultured cerebellar granule neurons, the authors showed that GAP43 palmitoylation is dynamic in neurons with a half-life of approximately 5 h, compared with the long half-life of the protein, which is greater than 50 h.

    Article  CAS  PubMed  Google Scholar 

  83. Patterson, S. I. & Skene, J. H. A shift in protein S-palmitoylation, with persistence of growth-associated substrates, marks a critical period for synaptic plasticity in developing brain. J. Neurobiol. 39, 423–437 (1999).This study showed a decrease in the palmitoylation of GAP43 and other substrates of growth cone maturation, indicating that a developmental switch in the palmitoylation of growth cone proteins might help to halt axon extension.

    Article  CAS  PubMed  Google Scholar 

  84. Niethammer, P. et al. Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J. Cell Biol. 157, 521–532 (2002).The authors showed that palmitoylation-dependent lipid raft association of NCAM is crucial for activation of the non-receptor tyrosine kinase pathway and the induction of neurite outgrowth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pfanner, N. et al. Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae. Cell 59, 95–102 (1989).Using a clever biochemical assay, the authors provided the first evidence that palmitoylation regulates the budding of transport vesicles from Golgi cisternae.

    Article  CAS  PubMed  Google Scholar 

  86. Veit, M., Sollner, T. H. & Rothman, J. E. Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Lett. 385, 119–123 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Chamberlain, L. H. & Burgoyne, R. D. Cysteine-string protein: the chaperone at the synapse. J. Neurochem. 74, 1781–1789 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Veit, M., Becher, A. & Ahnert-Hilger, G. Synaptobrevin 2 is palmitoylated in synaptic vesicles prepared from adult, but not from embryonic brain. Mol. Cell. Neurosci. 15, 408–416 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Hepler, J. R. & Gilman, A. G. G proteins. Trends Biochem. Sci. 17, 383–387 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Hall, R. A., Premont, R. T. & Lefkowitz, R. J. Heptahelical receptor signaling: beyond the G protein paradigm. J. Cell Biol. 145, 927–932 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Iiri, T., Backlund, P. S. Jr, Jones, T. L., Wedegaertner, P. B. & Bourne, H. R. Reciprocal regulation of Gsα by palmitate and the β subunit. Proc. Natl Acad. Sci. USA 93, 14592–14597 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wedegaertner, P. B. & Bourne, H. R. Activation and depalmitoylation of Gsα. Cell 77, 1063–1070 (1994).This study established the concept that receptor activation accelerates palmitate turnover on G proteins.

    Article  CAS  PubMed  Google Scholar 

  93. Jones, T. L., Degtyarev, M. Y. & Backlund, P. S. Jr . The stoichiometry of Gαs palmitoylation in its basal and activated states. Biochemistry 36, 7185–7191 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Tu, Y. P., Wang, J. & Ross, E. M. Inhibition of brain Gz GAP and other RGS proteins by palmitoylation of G protein α subunits. Science 278, 1132–1135 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Moffett, S., Rousseau, G., Lagace, M. & Bouvier, M. The palmitoylation state of the β2-adrenergic receptor regulates the synergistic action of cyclic AMP-dependent protein kinase and β-adrenergic receptor kinase involved in its phosphorylation and desensitization. J. Neurochem. 76, 269–279 (2001).Depalmitoylation of the β 2 -adrenoceptor promotes receptor phosphorylation and receptor internalization.

    Article  CAS  PubMed  Google Scholar 

  96. Eason, M. G., Jacinto, M. T., Theiss, C. T. & Liggett, S. B. The palmitoylated cysteine of the cytoplasmic tail of α2A-adrenergic receptors confers subtype-specific agonist-promoted downregulation. Proc. Natl Acad. Sci. USA 91, 11178–11182 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tu, Y., Popov, S., Slaughter, C. & Ross, E. M. Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10. J. Biol. Chem. 274, 38260–38267 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Stoffel, R. H., Inglese, J., Macrae, A. D., Lefkowitz, R. J. & Premont, R. T. Palmitoylation increases the kinase activity of the G protein-coupled receptor kinase, GRK6. Biochemistry 37, 16053–16059 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Kennedy, M. B. Signal-processing machines at the postsynaptic density. Science 290, 750–754 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Kornau, H.-C., Seeburg, P. H. & Kennedy, M. B. Interaction of ion channels and receptors with PDZ domains. Curr. Opin. Neurobiol. 7, 368–373 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Garner, C. C., Nash, J. & Huganir, R. L. PDZ domains in synapse assembly and signalling. Trends Cell Biol. 10, 274–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Craven, S. E. & Bredt, D. S. PDZ proteins organize synaptic signaling pathways. Cell 93, 495–498 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Tomita, S., Nicoll, R. A. & Bredt, D. S. PDZ protein interactions regulating glutamate receptor function and plasticity. J. Cell Biol. 153, F19–F24 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Cho, K. O., Hunt, C. A. & Kennedy, M. B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929–942 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Kistner, U. et al. SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J. Biol. Chem. 268, 4580–4583 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Kim, E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol. 136, 669–678 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Brenman, J. E. et al. Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. J. Neurosci. 18, 8805–8813 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim, E., Niethammer, M., Rothschild, A., Jan, Y. N. & Sheng, M. Clustering of Shaker-type K+ channels by direct interaction with the PSD-95/SAP90 family of membrane-associated guanylate kinases. Nature 378, 85–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, E., Cho, K.-O., Rothschild, A. & Sheng, M. Heteromultimerization and NMDA receptor clustering activity of chapsyn-110, a novel member of the PSD-95 family of synaptic proteins. Neuron 17, 103–113 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Tiffany, A. M. et al. PSD-95 and SAP97 exhibit distinct mechanisms for regulating K+ channel surface expression and clustering. J. Cell Biol. 148, 147–158 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Craven, S. E., Husseini, A. E. & Bredt, D. S. Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron 22, 497–509 (1999).This study was the first to show the essential role of protein palmitoylation in protein targeting to postsynaptic sites.

    Article  CAS  PubMed  Google Scholar 

  113. Muller, B. M. et al. Molecular characterization and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the Drosophila discs-large tumor suppressor protein. J. Neurosci. 15, 2354–2366 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Brenman, J. E., Christopherson, K. S., Craven, S. E., McGee, A. W. & Bredt, D. S. Cloning and characterization of postsynaptic density 93 (PSD-93), a nitric oxide synthase interacting protein. J. Neurosci. 16, 7407–7415 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Muller, B. M. et al. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 17, 255–265 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. El-Husseini, A. E. et al. Ion channel clustering by membrane-associated guanylate kinases. Differential regulation by N-terminal lipid and metal binding motifs. J. Biol. Chem. 275, 23904–23910 (2000).Using a heterologous cell assay, this work showed that members of the PSD95 family are differentially palmitoylated, and that only the palmitoylated members PSD95 and PSD93 can induce ion channel clustering.

    Article  CAS  PubMed  Google Scholar 

  117. Sans, N. et al. Synapse-associated protein 97 selectively associates with a subset of AMPA receptors early in their biosynthetic pathway. J. Neurosci. 21, 7506–7516 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chetkovich, D. M. et al. Postsynaptic targeting of alternative postsynaptic density-95 isoforms by distinct mechanisms. J. Neurosci. 22, 6415–6425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dong, H. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Srivastava, S. et al. Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP. Neuron 21, 581–591 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Yamazaki, M. et al. Differential palmitoylation of two mouse glutamate receptor interaction protein isoforms with different N-terminal sequences. Neurosci. Lett. 304, 81–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Tsien, R. W. Calcium channels in excitable cell membranes. Annu. Rev. Physiol. 45, 341–358 (1983).

    Article  CAS  PubMed  Google Scholar 

  123. Hess, P. Calcium channels in vertebrate cells. Annu. Rev. Neurosci. 13, 337–356 (1990).

    Article  CAS  PubMed  Google Scholar 

  124. Walker, D. & De Waard, M. Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci. 21, 148–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Olcese, R. et al. The amino terminus of a calcium channel β subunit sets rates of channel inactivation independently of the subunit's effect on activation. Neuron 13, 1433–1438 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Qin, N. et al. Unique regulatory properties of the type 2a Ca2+ channel β subunit caused by palmitoylation. Proc. Natl Acad. Sci. USA 95, 4690–4695 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hurley, J. H., Cahill, A. L., Currie, K. P. & Fox, A. P. The role of dynamic palmitoylation in Ca2+ channel inactivation. Proc. Natl Acad. Sci. USA 97, 9293–9298 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sculptoreanu, A., Scheuer, T. & Catterall, W. A. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature 364, 240–243 (1993).

    Article  CAS  PubMed  Google Scholar 

  129. Takimoto, K., Yang, E. K. & Conforti, L. Palmitoylation of KChIP splicing variants is required for efficient cell surface expression of Kv4.3 channels. J. Biol. Chem. 277, 26904–26911 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Malinow, R., Mainen, Z. F. & Hayashi, Y. LTP mechanisms: from silence to four-lane traffic. Curr. Opin. Neurobiol. 10, 352–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Malenka, R. C. & Nicoll, R. A. Long-term potentiation — a decade of progress? Science 285, 1870–1874 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt, D. S. PSD-95 involvement in maturation of excitatory synapses. Science 290, 1364–1368 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Kornau, H.-C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Letts, V. A. et al. The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit. Nature Genet. 19, 340–347 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Hashimoto, K. et al. Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. J. Neurosci. 19, 6027–6036 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, L. et al. Stargazin mediates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Webb, Y., Hermida-Matsumoto, L. & Resh, M. D. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem. 275, 261–270 (2000).This study established the utility of 2-bromopalmitate as an inhibitor of protein palmitoylation.

    Article  CAS  PubMed  Google Scholar 

  138. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Duncan, J. A. & Gilman, A. G. A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein α subunits and p21RAS. J. Biol. Chem. 273, 15830–15837 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Yeh, D. C., Duncan, J. A., Yamashita, S. & Michel, T. Depalmitoylation of endothelial nitric-oxide synthase by acyl-protein thioesterase 1 is potentiated by Ca2+–calmodulin. J. Biol. Chem. 274, 33148–33154 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Camp, L. A., Verkruyse, L. A., Afendis, S. J., Slaughter, C. A. & Hofmann, S. L. Molecular cloning and expression of palmitoyl-protein thioesterase. J. Biol. Chem. 269, 23212–23219 (1994).

    Article  CAS  PubMed  Google Scholar 

  142. Vesa, J. et al. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 376, 584–587 (1995).This work showed that mutations in the lysosomal palmitoyl thioesterase cause a genetic neurological disease.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Levy for help in preparing this manuscript. This work was supported by grants to A.E.E. from the Canadian Institutes of Health Research, the Michael Smith Foundation for Health Research and the National Alliance for Research on Schizophrenia and Depression, and by grants to D.S.B. from the National Institutes of Health, the Christopher Reeves Paralysis Foundation, the Human Frontier Research Program and the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Bredt.

Related links

Related links

DATABASES

LocusLink

ACBP

α2A-adrenoceptor

β2-adrenoceptor

AKAP18

AMPA receptors

APT

β-arrestin

calcium channel α1-subunit

calcium channel α2δ-subunit

calcium channel β-subunit

calmodulin

cysteine-string protein

Fyn

GAD65

GAP43

GluR6

GRIP

GRK

H-Ras

KChIPs

mGluR4

NCAM140

NMDA receptors

NOS

palmitoyl-transferase

paralemmin

patched

PPT1

PSD93

PSD95

RGS

RhoB

rhodopsin

SAP102

SAP97

Shh

Ski

α-SNAP

SNAP25

sodium channel α-subunit

Src

stargazin

synaptobrevin

synaptotagmin

Tc10

Thy-1

VAMP

OMIM

infantile neuronal ceroid lipofuscinosis

<i>Saccharomyces</i> Genome Database

ERF2

Ras

FURTHER INFORMATION

Encyclopedia of Life Sciences

G protein-coupled receptors

G proteins

regulation by covalent modification

Glossary

PARACRINE

A mechanism of signalling between cells that relies on the diffusion of signalling molecules through the intercellular spaces.

HETEROMERIC

Formed by the assembly of two or more different subunits.

PEROXISOME

A cellular microbody that contains enzymes that generate or metabolize hydrogen peroxide. In mammals, they have been identified in liver and kidney cells.

PULSE–CHASE EXPERIMENTS

Experiments in which the addition of a radioactive amino acid (pulse) is followed by non-labelled amino acid (chase), and the production of radioactive proteins from the amino-acid precursors is monitored.

GPI

Glycosyl phosphatidylinositol. A post-translational modification, the function of which is to attach proteins to the exoplasmic leaflet of membranes, possibly to specific domains therein. The anchor is made of one molecule of phosphatidylinositol to which a carbohydrate chain is linked through the C-6 hydroxyl of the inositol, and is attached to the protein through an ethanolamine phosphate moiety.

SPINES

Specialized regions of the dendrite that receive synaptic inputs from other neurons.

SNARE PROTEINS

A family of membrane-tethered coiled-coil proteins that are required for membrane fusion in exocytosis (such as during neurotransmitter release) and other membrane transport events. When trans-SNARE complexes are formed between vesicle SNAREs and target-membrane SNAREs, they pull the two membranes close together, presumably causing them to fuse.

PDZ DOMAIN

A peptide-binding domain that is important for the organization of membrane proteins, particularly at cell–cell junctions, including synapses. They can bind to the carboxyl termini of proteins or can form dimers with other PDZ domains. PDZ domains are named after the proteins in which these sequence motifs were originally identified (PSD95, Discs large, zona occludens 1).

METABOTROPIC

A term that describes a receptor that exerts its effects through enzyme activation.

ALTERNATIVE SPLICING

During splicing, introns are excised from RNA after transcription and the cut ends are rejoined to form a continuous message. Alternative splicing allows the production of different messages from the same DNA molecule.

SH DOMAINS

Src-homology domains are involved in interactions with phosphorylated tyrosine residues on other proteins (SH2 domains) or with proline-rich sections of other proteins (SH3 domains).

CHROMAFFIN CELLS

Cells of the adrenal gland that store and secrete catecholamines. The term 'chromaffin' reflects the ability of chromium salts to stain them.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Husseini, AD., Bredt, D. Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 3, 791–802 (2002). https://doi.org/10.1038/nrn940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing