Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

New sites of action for GIRK and SK channels

Abstract

It was recently discovered that two different types of voltage-insensitive K+ channels, G protein-coupled inwardly rectifying K+ (GIRK) and small-conductance Ca2+-activated K+ (SK) channels, are located on dendritic branches, spines and shafts in the postsynaptic densities of excitatory synapses in many central neurons. Together with increases in our knowledge of how these channels are regulated through stable protein–protein interactions in multi-protein complexes, this has added another layer of complexity to our understanding of synaptic transmission and plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of GIRK channels and SK channels.
Figure 2: Gating, modulation and trafficking of GIRK and SK channels.
Figure 3: Postsynaptic GIRK and SK channels.

Similar content being viewed by others

References

  1. Gutman, G. A. et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 57, 473–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Kubo, Y. et al. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol. Rev. 57, 509–526 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Wei, A. D. et al. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol. Rev. 57, 463–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Inanobe, A. et al. Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J. Neurosci. 19, 1006–1017 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iwanir, S. & Reuveny, E. Adrenaline-induced hyperpolarization of mouse pancreatic islet cells is mediated by G protein-gated inwardly rectifying potassium (GIRK) channels. Pflugers Arch. 456, 1097–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Strassmaier, T. et al. A novel isoform of SK2 assembles with other SK subunits in mouse brain. J. Biol. Chem. 280, 21231–21236 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Dascal, N. Signalling via the G protein-activated K+ channels. Cell. Signal. 9, 551–573 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Peleg, S., Varon, D., Ivanina, T., Dessauer, C. W. & Dascal, N. Gαi controls the gating of the G protein-activated K+ channel, GIRK. Neuron 33, 87–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Clancy, S. M. et al. Pertussis-toxin-sensitive Gα subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex. Mol. Cell. Neurosci. 28, 375–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Fowler, C. E., Aryal, P., Suen, K. F. & Slesinger, P. A. Evidence for association of GABAB receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J. Physiol. 580, 51–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Doupnik, C. A. GPCR-Kir channel signaling complexes: defining rules of engagement. J. Recept. Signal Transduct. Res. 28, 83–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hill, J. J. & Peralta, E. G. Inhibition of a Gi-activated potassium channel (GIRK1/4) by the Gq-coupled m1 muscarinic acetylcholine receptor. J. Biol. Chem. 276, 5505–5510 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Xia, X.-M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Nikolov, E. N. & Ivanova-Nikolova, T. T. Coordination of membrane excitability through a GIRK1 signaling complex in the atria. J. Biol. Chem. 279, 23630–23636 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Medina, I. et al. A switch mechanism for Gβγ activation of IKACh . J. Biol. Chem. 275, 29709–29716 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Rusinova, R. et al. Mass spectrometric analysis reveals a functionally important PKA phosphorylation site in a Kir3 channel subunit. Pflugers Arch. 458, 303–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mao, J. et al. Molecular basis for the inhibition of G protein-coupled inward rectifier K+ channels by protein kinase C. Proc. Natl Acad. Sci. USA 101, 1087–1092 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keselman, I., Fribourg, M., Felsenfeld, D. P. & Logothetis, D. E. Mechanism of PLC-mediated Kir3 current inhibition. Channels (Austin) 1, 113–123 (2007).

    Article  Google Scholar 

  19. Thomas, A. M., Brown, S. G., Leaney, J. L. & Tinker, A. Differential phosphoinositide binding to components of the G protein-gated K+ channel. J. Membr. Biol. 211, 43–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Brown, S. G., Thomas, A., Dekker, L. V., Tinker, A. & Leaney, J. L. PKCδ sensitizes Kir3.1/3.2 channels to changes in membrane phospholipid levels after M3 receptor activation in HEK-293 cells. Am. J. Physiol. Cell Physiol. 289, C543–C556 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Bildl, W. et al. Protein kinase CK2 is coassembled with small conductance Ca2+-activated K+ channels and regulates channel gating. Neuron 43, 847–858 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Allen, D., Fakler, B., Maylie, J. & Adelman, J. P. Organization and regulation of small conductance Ca2+-activated K+ channel multiprotein complexes. J. Neurosci. 27, 2369–2376 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Willars, G. B. Mammalian RGS proteins: multifunctional regulators of cellular signalling. Semin. Cell Dev. Biol. 17, 363–376 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Doupnik, C. A., Davidson, N., Lester, H. A. & Kofuji, P. RGS proteins reconstitute the rapid gating kinetics of Gβγ-activated inwardly rectifying K+ channels. Proc. Natl Acad. Sci. USA 94, 10461–10466 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jaen, C. & Doupnik, C. A. RGS3 and RGS4 differentially associate with G protein-coupled receptor-Kir3 channel signaling complexes revealing two modes of RGS modulation. Precoupling and collision coupling. J. Biol. Chem. 281, 34549–34560 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. David, M. et al. Interactions between GABA-B1 receptors and Kir 3 inwardly rectifying potassium channels. Cell. Signal. 18, 2172–2181 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Luscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C. & Nicoll, R. A. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19, 687–695 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Labouebe, G. et al. RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nature Neurosci. 10, 1559–1568 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Lomazzi, M., Slesinger, P. A. & Luscher, C. Addictive drugs modulate GIRK-channel signaling by regulating RGS proteins. Trends Pharmacol. Sci. 29, 544–549 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma, D. et al. Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron 33, 715–729 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Lunn, M. L. et al. A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nature Neurosci. 10, 1249–1259 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, M. T., Lujan, R., Watanabe, M., Adelman, J. P. & Maylie, J. SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses. Nature Neurosci. 11, 170–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Karschin, C., Dissmann, E., Stuhmer, W. & Karschin, A. IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 16, 3559–3570 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wickman, K., Karschin, C., Karschin, A., Picciotto, M. R. & Clapham, D. E. Brain localization and behavioral impact of the G-protein-gated K+ channel subunit GIRK4. J. Neurosci. 20, 5608–5615 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Signorini, S., Liao, Y. J., Duncan, S. A., Jan, L. Y. & Stoffel, M. Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc. Natl Acad. Sci. USA 94, 923–927 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koyrakh, L. et al. Molecular and cellular diversity of neuronal G-protein-gated potassium channels. J. Neurosci. 25, 11468–11478 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marker, C. L., Lujan, R., Colon, J. & Wickman, K. Distinct populations of spinal cord lamina II interneurons expressing G-protein-gated potassium channels. J. Neurosci. 26, 12251–12259 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marker, C. L., Lujan, R., Loh, H. H. & Wickman, K. Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of μ- and δ- but not κ-opioids. J. Neurosci. 25, 3551–3559 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aguado, C. et al. Cell type-specific subunit composition of G protein-gated potassium channels in the cerebellum. J. Neurochem. 105, 497–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Cruz, H. G. et al. Bi-directional effects of GABAB receptor agonists on the mesolimbic dopamine system. Nature Neurosci. 7, 153–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Stocker, M. & Pedarzani, P. Differential distribution of three Ca2+-activated K+ channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol. Cell. Neurosci. 15, 476–493 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Sailer, C. A., Kaufmann, W. A., Marksteiner, J. & Knaus, H. G. Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol. Cell. Neurosci. 26, 458–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Drake, C. T., Bausch, S. B., Milner, T. A. & Chavkin, C. GIRK1 immunoreactivity is present predominantly in dendrites, dendritic spines, and somata in the CA1 region of the hippocampus. Proc. Natl Acad. Sci. USA 94, 1007–1012 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, X. & Johnston, D. Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons. J. Neurosci. 25, 3787–3792 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kulik, A. et al. Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J. Neurosci. 26, 4289–4297 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Masugi-Tokita, M. & Shigemoto, R. High-resolution quantitative visualization of glutamate and GABA receptors at central synapses. Curr. Opin. Neurobiol. 17, 387–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Ladera, C. et al. Pre-synaptic GABA receptors inhibit glutamate release through GIRK channels in rat cerebral cortex. J. Neurochem. 107, 1506–1517 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Fernández-Alacid, L. Subcellular compartment-specific molecular diversity of pre- and postsynaptic GABAB-activated GIRK channels in Purkinje cells. J. Neurochem. (in the press).

  49. Scanziani, M. GABA spillover activates postsynaptic GABAB receptors to control rhythmic hippocampal activity. Neuron 25, 673–681 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, C. S. et al. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 123, 105–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Chung, H. J., Qian, X., Ehlers, M., Jan, Y. N. & Jan, L. Y. Neuronal activity regulates phosphorylation-dependent surface delivery of G protein-activated inwardly rectifying potassium channels. Proc. Natl Acad. Sci. USA 106, 629–634 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Chung, H. J. et al. G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation. Proc. Natl Acad. Sci. USA 106, 635–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Ngo-Anh, T. J. et al. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nature Neurosci. 8, 642–649 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Bloodgood, B. L. & Sabatini, B. L. Nonlinear regulation of unitary synaptic signals by CaV2.3 voltage-sensitive calcium channels located in dendritic spines. Neuron 53, 249–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Faber, E. S., Delaney, A. J. & Sah, P. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nature Neurosci. 8, 635–641 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Stackman, R. W. et al. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J. Neurosci. 22, 10163–10171 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hammond, R. S. et al. Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity. J. Neurosci. 26, 1844–1853 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Faber, E. S. et al. Modulation of SK channel trafficking by beta adrenoceptors enhances excitatory synaptic transmission and plasticity in the amygdala. J. Neurosci. 28, 10803–10813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Lin for valuable discussions and comments on the manuscript. R.L. is supported by the Spanish Ministry of Education and Science (BFU-2006-01896/BFI and CONSOLIDER CSD2008-00005) and Junta de Comunidades de Castilla-La Mancha (PAI08-0174-6,967). Grants from the US National Institutes of Health support J.M. (MH081860) and J.P.A. (MH076752 and NS038880).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Luján.

Supplementary information

Supplementary information S1 (box)

Localization of and putative roles for presynaptic GIRK channels in GABAB–mediated regulation of glutamate release. (PDF 220 kb)

Related links

Related links

FURTHER INFORMATION

Centro Regional de Investigaciones Biomédicas

The Spanish Ion Channel Initiative

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luján, R., Maylie, J. & Adelman, J. New sites of action for GIRK and SK channels. Nat Rev Neurosci 10, 475–480 (2009). https://doi.org/10.1038/nrn2668

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing