Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glutamate transporters: confining runaway excitation by shaping synaptic transmission

Key Points

  • Excitatory amino-acid transporters (EAATs) terminate glutamate's actions and thus maintain proper neuronal function. These proteins are expressed in vast quantities by glia, but are also present in neurons.

  • Glutamate uptake is coupled to the cotransport of three Na+ ions and one H+ ion, and the countertransport of one K+ ion. This stoichiometry is responsible for keeping the tonic extracellular glutamate concentration at 25 nM: below that which is required to significantly activate receptors.

  • In addition to the coupled ions, glutamate transporters allow an uncoupled anion flux. This anion conductance is thought to reflect the occupancy of glutamate-bound conformations, and allows the direct measurement of the activity of transporters.

  • The affinity constants measured from peak currents of neuronal transporters predict that they behave as buffers to rapidly bind released glutamate molecules, whereas the affinities of the more numerous glial transporters predict that they act also as sinks, removing glutamate from the extracellular space.

  • At Schaeffer collateral–CA1 synapses in the hippocampus, glial transporters are responsible for taking up more than 80% of the released glutamate, whereas the neuronal transporters limit spillover between synapses.

  • In the cerebellum, like in the hippocampus, glial transporters are responsible for the bulk of glutamate uptake, whereas the neuronal transporter EAAT4, which is found exclusively in Purkinje cells, regulates extrasynaptic receptor activation and subsequent cerebellar plasticity.

  • At retinal synapses, unlike in any other brain region, presynaptic glutamate transporters act as Cl channels, rather than transporters, to reduce vesicular release at individual boutons.

  • The high concentration of EAATs around synapses ensures that unbound glutamate will encounter available transporters. Together, rapid sequestration, low capture efficiency and the high concentration of EAATs lead to the buffered diffusion of glutamate, which prevents it spilling back into the synapse.

Abstract

Traditionally, glutamate transporters have been viewed as membrane proteins that harness the electrochemical gradient to slowly transport glutamate from the extracellular space into glial cells. However, recent studies have shown that glutamate transporters on glial and neuronal membranes also rapidly bind released glutamate to shape synaptic transmission. In this Review, we summarize the properties of glutamate transporters that influence synaptic transmission and are subject to regulation and plasticity. We highlight how the diversity of glutamate-transporter function relates to transporter location, density and affinity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uptake thermodynamics of glutamate transporters.
Figure 2: The crystal structure of a bacterial glutamate transporter.
Figure 3: The architecture of hippocampal CA1 synapses.
Figure 4: The architecture of cerebellar Purkinje-cell synapses.
Figure 5: The architecture of retinal synapses.

Similar content being viewed by others

References

  1. Allen, N. J., Karadottir, R. & Attwell, D. Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflugers Arch. 449, 132–142 (2004).

    CAS  PubMed  Google Scholar 

  2. Maragakis, N. J. & Rothstein, J. D. Mechanisms of disease: astrocytes in neurodegenerative disease. Nature Clin. Pract. Neurol. 2, 679–689 (2006).

    CAS  Google Scholar 

  3. Beart, P. M. & O'Shea, R. D. Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br. J. Pharmacol. 150, 5–17 (2007).

    CAS  PubMed  Google Scholar 

  4. Tilleux, S. & Hermans, E. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J. Neurosci. Res. 85, 2059–2070 (2007).

    CAS  PubMed  Google Scholar 

  5. Stern, J. R., Eggleston, L. V., Hems, R. & Krebs, H. A. Accumulation of glutamic acid in isolated brain tissue. Biochem. J. 44, 410–418 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kanner, B. I. & Sharon, I. Active transport of L-glutamate by membrane vesicles isolated from rat brain. Biochemistry 17, 3949–3953 (1978).

    CAS  PubMed  Google Scholar 

  7. Kanner, B. I. & Schuldiner, S. Mechanism of transport and storage of neurotransmitters. CRC Crit. Rev. Biochem. 22, 1–38 (1987).

    CAS  PubMed  Google Scholar 

  8. Danbolt, N. C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001).

    CAS  PubMed  Google Scholar 

  9. Kanai, Y. & Hediger, M. A. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360, 467–471 (1992).

    CAS  PubMed  Google Scholar 

  10. Pines, G. et al. Cloning and expression of a rat brain L-glutamate transporter. Nature 360, 464–467 (1992).

    CAS  PubMed  Google Scholar 

  11. Storck, T., Schulte, S., Hofmann, K. & Stoffel, W. Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc. Natl Acad. Sci. USA 89, 10955–10959 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Arriza, J. L. et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14, 5559–5569 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P. & Amara, S. G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599–603 (1995).

    CAS  PubMed  Google Scholar 

  14. Arriza, J. L., Eliasof, S., Kavanaugh, M. P. & Amara, S. G. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl Acad. Sci. USA 94, 4155–4160 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kavanaugh, M. P. Neurotransmitter transport: models in flux. Proc. Natl Acad. Sci. USA 95, 12737–12738 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Barbour, B., Brew, H. & Attwell, D. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature 335, 433–435 (1988).

    CAS  PubMed  Google Scholar 

  17. Klockner, U., Storck, T., Conradt, M. & Stoffel, W. Electrogenic L-glutamate uptake in Xenopus laevis oocytes expressing a cloned rat brain L-glutamate/L-aspartate transporter (GLAST-1). J. Biol. Chem. 268, 14594–14596 (1993).

    CAS  PubMed  Google Scholar 

  18. Stallcup, W. B., Bulloch, K. & Baetge, E. E. Coupled transport of glutamate and sodium in a cerebellar nerve cell line. J. Neurochem. 32, 57–65 (1979).

    CAS  PubMed  Google Scholar 

  19. Kanner, B. I. & Bendahan, A. Binding order of substrates to the sodium and potassium ion coupled L-glutamic acid transporter from rat brain. Biochemistry 21, 6327–6330 (1982).

    CAS  PubMed  Google Scholar 

  20. Erecinska, M., Wantorsky, D. & Wilson, D. F. Aspartate transport in synaptosomes from rat brain. J. Biol. Chem. 258, 9069–9077 (1983).

    CAS  PubMed  Google Scholar 

  21. Bouvier, M., Szatkowski, M., Amato, A. & Attwell, D. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature 360, 471–474 (1992).

    CAS  PubMed  Google Scholar 

  22. Kanai, Y. et al. Electrogenic properties of the epithelial and neuronal high affinity glutamate transporter. J. Biol. Chem. 270, 16561–16568 (1995).

    CAS  PubMed  Google Scholar 

  23. Wadiche, J. I., Arriza, J. L., Amara, S. G. & Kavanaugh, M. P. Kinetics of a human glutamate transporter. Neuron 14, 1019–1027 (1995).

    CAS  PubMed  Google Scholar 

  24. Zerangue, N. & Kavanaugh, M. P. Interaction of L-cysteine with a human excitatory amino acid transporter. J. Physiol. 493, 419–423 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zerangue, N. & Kavanaugh, M. P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996). The definitive paper that determined the number of ions that are coupled to glutamate uptake, by measuring the reversal potential of glutamate transporters under different extracellular ionic conditions.

    CAS  PubMed  Google Scholar 

  26. Levy, L. M., Warr, O. & Attwell, D. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci. 18, 9620–9628 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Owe, S. G., Marcaggi, P. & Attwell, D. The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J. Physiol. 577, 591–599 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Herman, M. A. & Jahr, C. E. Extracellular glutamate concentration in hippocampal slice. J. Neurosci. 27, 9736–9741 (2007). Using NMDA receptors as a 'sniffer', this article provided a quantitative measurement of the glutamate concentration in the extracellular space.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cavelier, P. & Attwell, D. Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J. Physiol. 564, 397–410 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sah, P., Hestrin, S. & Nicoll, R. A. Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science 246, 815–818 (1989).

    CAS  PubMed  Google Scholar 

  31. Lerma, J., Herranz, A. S., Herreras, O., Abraira, V. & Martin del Rio, R. In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res. 384, 145–155 (1986).

    CAS  PubMed  Google Scholar 

  32. McGann, J. P. et al. Odorant representations are modulated by intra- but not interglomerular presynaptic inhibition of olfactory sensory neurons. Neuron 48, 1039–1053 (2005).

    CAS  PubMed  Google Scholar 

  33. Wadiche, J. I., Amara, S. G. & Kavanaugh, M. P. Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728 (1995). This work demonstrated that glial and neuronal glutamate transporters behave as both glutamate transporters and Cl channels. The authors showed that Cl and other anions readily permeate EAATs, and that this uncoupled conductance does not influence glutamate uptake.

    CAS  PubMed  Google Scholar 

  34. Vandenberg, R. J., Mitrovic, A. D. & Johnston, G. A. Serine-O-sulphate transport by the human glutamate transporter, EAAT2. Br. J. Pharmacol. 123, 1593–1600 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ryan, R. M. & Mindell, J. A. The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nature Struct. Mol. Biol. 14, 365–371 (2007). Using a fluorescence assay to detect anion flux, this study provided the first evidence that glutamate transporters allow the flow of anions in the absence of any additional subunits.

    CAS  Google Scholar 

  36. Lehre, K. P. & Danbolt, N. C. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci. 18, 8751–8757 (1998). This rigorous study used quantitative immunoblotting to determine the number of glial and neuronal transporters in different regions of the brain. The authors concluded that the number of glial transporters is sufficiently high to clear the number of glutamate molecules released per vesicle.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dehnes, Y. et al. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J. Neurosci. 18, 3606–3619 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Haugeto, O. et al. Brain glutamate transporter proteins form homomultimers. J. Biol. Chem. 271, 27715–27722 (1996).

    CAS  PubMed  Google Scholar 

  39. Eskandari, S., Kreman, M., Kavanaugh, M. P., Wright, E. M. & Zampighi, G. A. Pentameric assembly of a neuronal glutamate transporter. Proc. Natl Acad. Sci. USA 97, 8641–8646 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004). This article provided the first crystal structure of a glutamate transporter family member. It offered direct evidence that transporters are homotrimers and that the glutamate-binding site is sandwiched between two hairpin loops, presumably the transport gates. The article also suggested that an alternating-access mechanism mediates glutamate transport.

    CAS  PubMed  Google Scholar 

  41. Koch, H. P. & Larsson, H. P. Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters. J. Neurosci. 25, 1730–1736 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Grewer, C. et al. Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44, 11913–11923 (2005).

    CAS  PubMed  Google Scholar 

  43. Koch, H. P., Brown, R. L. & Larsson, H. P. The glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits. J. Neurosci. 27, 2943–2947 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Boudker, O., Ryan, R. M., Yernool, D., Shimamoto, K. & Gouaux, E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007).

    CAS  PubMed  Google Scholar 

  45. Otis, T. S. & Jahr, C. E. Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J. Neurosci. 18, 7099–7110 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bergles, D. E. & Jahr, C. E. Glial contribution to glutamate uptake at Schaffer collateral–commissural synapses in the hippocampus. J. Neurosci. 18, 7709–7716 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Otis, T. S. & Kavanaugh, M. P. Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J. Neurosci. 20, 2749–2757 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Auger, C. & Attwell, D. Fast removal of synaptic glutamate by postsynaptic transporters. Neuron 28, 547–558 (2000).

    CAS  PubMed  Google Scholar 

  49. Koch, H. P., Hubbard, J. M. & Larsson, H. P. Voltage-independent sodium-binding events reported by the 4B-4C loop in the human glutamate transporter EAAT3. J. Biol. Chem. 282, 24547–24553 (2007).

    CAS  PubMed  Google Scholar 

  50. Tolner, B., Poolman, B. & Konings, W. N. Adaptation of microorganisms and their transport systems to high temperatures. Comp. Biochem. Physiol. A Physiol. 118, 423–428 (1997).

    CAS  PubMed  Google Scholar 

  51. Malenka, R. C. & Nicoll, R. A. Long-term potentiation–a decade of progress? Science 285, 1870–1874 (1999).

    CAS  PubMed  Google Scholar 

  52. Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702 (1997).

    CAS  PubMed  Google Scholar 

  53. Lehre, K. P., Levy, L. M., Ottersen, O. P., Storm-Mathisen, J. & Danbolt, N. C. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J. Neurosci. 15, 1835–1853 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chaudhry, F. A. et al. Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15, 711–720 (1995).

    CAS  PubMed  Google Scholar 

  55. Rothstein, J. D. et al. Localization of neuronal and glial glutamate transporters. Neuron 13, 713–725 (1994).

    CAS  PubMed  Google Scholar 

  56. Chen, W. et al. The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J. Neurosci. 24, 1136–1148 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Furuta, A., Rothstein, J. D. & Martin, L. J. Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J. Neurosci. 17, 8363–8375 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hestrin, S., Sah, P. & Nicoll, R. A. Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5, 247–253 (1990).

    CAS  PubMed  Google Scholar 

  59. Sarantis, M. et al. Glutamate uptake from the synaptic cleft does not shape the decay of the non-NMDA component of the synaptic current. Neuron 11, 541–549 (1993).

    CAS  PubMed  Google Scholar 

  60. Isaacson, J. S. & Nicoll, R. A. The uptake inhibitor L-trans-PDC enhances responses to glutamate but fails to alter the kinetics of excitatory synaptic currents in the hippocampus. J. Neurophysiol. 70, 2187–2191 (1993).

    CAS  PubMed  Google Scholar 

  61. Diamond, J. S. Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. J. Neurosci. 21, 8328–8338 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Arnth-Jensen, N., Jabaudon, D. & Scanziani, M. Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nature Neurosci. 5, 325–331 (2002).

    CAS  PubMed  Google Scholar 

  63. Tsukada, S., Iino, M., Takayasu, Y., Shimamoto, K. & Ozawa, S. Effects of a novel glutamate transporter blocker, (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), on activities of hippocampal neurons. Neuropharmacology 48, 479–491 (2005).

    CAS  PubMed  Google Scholar 

  64. Partin, K. M., Patneau, D. K. & Mayer, M. L. Cyclothiazide differentially modulates desensitization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. Mol. Pharmacol. 46, 129–138 (1994).

    CAS  PubMed  Google Scholar 

  65. Fucile, S., Miledi, R. & Eusebi, F. Effects of cyclothiazide on GluR1/AMPA receptors. Proc. Natl Acad. Sci. USA 103, 2943–2947 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Diamond, J. S. & Jahr, C. E. Asynchronous release of synaptic vesicles determines the time course of the AMPA receptor-mediated EPSC. Neuron 15, 1097–1107 (1995).

    CAS  PubMed  Google Scholar 

  67. Mennerick, S. & Zorumski, C. F. Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature 368, 59–62 (1994).

    CAS  PubMed  Google Scholar 

  68. Tong, G. & Jahr, C. E. Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13, 1195–1203 (1994). Using low-affinity antagonists to measure the lifetime of glutamate in the synapse, this paper suggested that glutamate transporters clear glutamate first through rapid binding/buffering and then through slow transport.

    CAS  PubMed  Google Scholar 

  69. Diamond, J. S. & Jahr, C. E. Transporters buffer synaptically released glutamate on a submillisecond time scale. J. Neurosci. 17, 4672–4687 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ventura, R. & Harris, K. M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lozovaya, N. A., Kopanitsa, M. V., Boychuk, Y. A. & Krishtal, O. A. Enhancement of glutamate release uncovers spillover-mediated transmission by N-methyl-D-aspartate receptors in the rat hippocampus. Neuroscience 91, 1321–1330 (1999).

    CAS  PubMed  Google Scholar 

  72. Sepkuty, J. P. et al. A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy. J. Neurosci. 22, 6372–6379 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mathews, G. C. & Diamond, J. S. Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength. J. Neurosci. 23, 2040–2048 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jakab, R. L. & Hamori, J. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat. Embryol. 179, 81–88 (1988).

    CAS  Google Scholar 

  75. Otis, T. S., Kavanaugh, M. P. & Jahr, C. E. Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science 277, 1515–1518 (1997).

    CAS  PubMed  Google Scholar 

  76. Wadiche, J. I. & Jahr, C. E. Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nature Neurosci. 8, 1329–1334 (2005).

    CAS  PubMed  Google Scholar 

  77. Huang, Y. H., Dykes-Hoberg, M., Tanaka, K., Rothstein, J. D. & Bergles, D. E. Climbing fiber activation of EAAT4 transporters and kainate receptors in cerebellar Purkinje cells. J. Neurosci. 24, 103–111 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gincel, D. et al. Analysis of cerebellar Purkinje cells using EAAT4 glutamate transporter promoter reporter in mice generated via bacterial artificial chromosome-mediated transgenesis. Exp. Neurol. 203, 205–212 (2007).

    CAS  PubMed  Google Scholar 

  79. Overstreet, L. S., Kinney, G. A., Liu, Y. B., Billups, D. & Slater, N. T. Glutamate transporters contribute to the time course of synaptic transmission in cerebellar granule cells. J. Neurosci. 19, 9663–9673 (1999). This paper provided an early demonstration of how glutamate transporters limit the extent of glutamate spillover during repetitive synaptic stimulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. DiGregorio, D. A., Nusser, Z. & Silver, R. A. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35, 521–533 (2002).

    CAS  PubMed  Google Scholar 

  81. Kinney, G. A., Overstreet, L. S. & Slater, N. T. Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J. Neurophysiol. 78, 1320–1333 (1997).

    CAS  PubMed  Google Scholar 

  82. Palay, S. L. & Chan-Palay, V. Cerebellar cortex: cytology and organization (Springer, New York, 1974).

    Google Scholar 

  83. Spacek, J. Three-dimensional analysis of dendritic spines. III. Glial sheath. Anat. Embryol. 171, 245–252 (1985).

    CAS  Google Scholar 

  84. Xu-Friedman, M. A., Harris, K. M. & Regehr, W. G. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J. Neurosci. 21, 6666–6672 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Barbour, B., Keller, B. U., Llano, I. & Marty, A. Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12, 1331–1343 (1994).

    CAS  PubMed  Google Scholar 

  86. Marcaggi, P. & Attwell, D. Endocannabinoid signaling depends on the spatial pattern of synapse activation. Nature Neurosci. 8, 776–781 (2005).

    CAS  PubMed  Google Scholar 

  87. Takahashi, M., Kovalchuk, Y. & Attwell, D. Pre- and postsynaptic determinants of EPSC waveform at cerebellar climbing fiber and parallel fiber to Purkinje cell synapses. J. Neurosci. 15, 5693–5702 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wadiche, J. I. & Jahr, C. E. Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32, 301–313 (2001).

    CAS  PubMed  Google Scholar 

  89. Foster, K. A., Kreitzer, A. C. & Regehr, W. G. Interaction of postsynaptic receptor saturation with presynaptic mechanisms produces a reliable synapse. Neuron 36, 1115–1126 (2002).

    CAS  PubMed  Google Scholar 

  90. Hansel, C., Linden, D. J. & D'Angelo, E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature Neurosci. 4, 467–475 (2001).

    CAS  PubMed  Google Scholar 

  91. Baude, A. et al. The metabotropic glutamate receptor (mGluR1α) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11, 771–787 (1993).

    CAS  PubMed  Google Scholar 

  92. Brasnjo, G. & Otis, T. S. Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron 31, 607–616 (2001). This paper provided the first demonstration that neuronal glutamate transporters are uniquely positioned to regulate glutamate concentration after synaptic vesicle release.

    CAS  PubMed  Google Scholar 

  93. Ozol, K., Hayden, J. M., Oberdick, J. & Hawkes, R. Transverse zones in the vermis of the mouse cerebellum. J. Comp. Neurol. 412, 95–111 (1999).

    CAS  PubMed  Google Scholar 

  94. Kim, S. J. et al. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426, 285–291 (2003).

    CAS  PubMed  Google Scholar 

  95. Marcaggi, P., Billups, D. & Attwell, D. The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fibre synapses. J. Physiol. 552, 89–107 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Takayasu, Y., Iino, M., Shimamoto, K., Tanaka, K. & Ozawa, S. Glial glutamate transporters maintain one-to-one relationship at the climbing fiber-Purkinje cell synapse by preventing glutamate spillover. J. Neurosci. 26, 6563–6572 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Szapiro, G. & Barbour, B. Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nature Neurosci. 10, 735–742 (2007).

    CAS  PubMed  Google Scholar 

  98. Pow, D. V., Barnett, N. L. & Penfold, P. Are neuronal transporters relevant in retinal glutamate homeostasis? Neurochem. Int. 37, 191–198 (2000).

    CAS  PubMed  Google Scholar 

  99. von Gersdorff, H., Vardi, E., Matthews, G. & Sterling, P. Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released. Neuron 16, 1221–1227 (1996).

    CAS  PubMed  Google Scholar 

  100. Hasegawa, J., Obara, T., Tanaka, K. & Tachibana, M. High-density presynaptic transporters are required for glutamate removal from the first visual synapse. Neuron 50, 63–74 (2006).

    CAS  PubMed  Google Scholar 

  101. Matsui, K., Hosoi, N. & Tachibana, M. Active role of glutamate uptake in the synaptic transmission from retinal nonspiking neurons. J. Neurosci. 19, 6755–6766 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Burris, C., Klug, K., Ngo, I. T., Sterling, P. & Schein, S. How Muller glial cells in macaque fovea coat and isolate the synaptic terminals of cone photoreceptors. J. Comp. Neurol. 453, 100–111 (2002).

    PubMed  Google Scholar 

  103. DeVries, S. H., Li, W. & Saszik, S. Parallel processing in two transmitter microenvironments at the cone photoreceptor synapse. Neuron 50, 735–748 (2006).

    CAS  PubMed  Google Scholar 

  104. Wersinger, E. et al. The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. J. Physiol. 577, 221–234 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Veruki, M. L., Morkve, S. H. & Hartveit, E. Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nature Neurosci. 9, 1388–1396 (2006). This elegant study in retinal slices used a combination of electrophysiological techniques to demonstrate that glutamate spills over to neighbouring bipolar cells, leading to the inhibition of transmitter release through the activation of presynaptic glutamate transporters.

    CAS  PubMed  Google Scholar 

  106. Wadiche, J. I. & von Gersdorff, H. Long-distance signaling via presynaptic glutamate transporters. Nature Neurosci. 9, 1352–1353 (2006).

    CAS  PubMed  Google Scholar 

  107. Sarantis, M., Everett, K. & Attwell, D. A presynaptic action of glutamate at the cone output synapse. Nature 332, 451–453 (1988).

    CAS  PubMed  Google Scholar 

  108. Picaud, S. A., Larsson, H. P., Grant, G. B., Lecar, H. & Werblin, F. S. Glutamate-gated chloride channel with glutamate-transporter-like properties in cone photoreceptors of the tiger salamander. J. Neurophysiol. 74, 1760–1771 (1995).

    CAS  PubMed  Google Scholar 

  109. Palmer, M. J., Taschenberger, H., Hull, C., Tremere, L. & von Gersdorff, H. Synaptic activation of presynaptic glutamate transporter currents in nerve terminals. J. Neurosci. 23, 4831–4841 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Grant, G. B. & Dowling, J. E. A glutamate-activated chloride current in cone-driven ON bipolar cells of the white perch retina. J. Neurosci. 15, 3852–3862 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Jackson, M. et al. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 410, 89–93 (2001). Using a yeast two-hybrid screen, this study and reference 112 identified the first glutamate-transporter-interacting proteins.

    CAS  PubMed  Google Scholar 

  112. Lin, C. I. et al. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3–18. Nature 410, 84–88 (2001).

    CAS  PubMed  Google Scholar 

  113. Gonzalez, M. I., Bannerman, P. G. & Robinson, M. B. Phorbol myristate acetate-dependent interaction of protein kinase Cα and the neuronal glutamate transporter EAAC1. J. Neurosci. 23, 5589–5593 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Gonzalez, M. I., Susarla, B. T. & Robinson, M. B. Evidence that protein kinase Cα interacts with and regulates the glial glutamate transporter GLT-1. J. Neurochem. 94, 1180–1188 (2005).

    CAS  PubMed  Google Scholar 

  115. Waxman, E. A., Baconguis, I., Lynch, D. R. & Robinson, M. B. N-methyl-D-aspartate receptor-dependent regulation of the glutamate transporter excitatory amino acid carrier 1. J. Biol. Chem. 282, 17594–17607 (2007).

    CAS  PubMed  Google Scholar 

  116. Marie, H. et al. The amino terminus of the glial glutamate transporter GLT-1 interacts with the LIM protein Ajuba. Mol. Cell. Neurosci. 19, 152–164 (2002).

    CAS  PubMed  Google Scholar 

  117. Levenson, J. et al. Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nature Neurosci. 5, 155–161 (2002). This study provided the unexpected finding that learning and memory paradigms can rapidly upregulate glutamate-transporter surface expression.

    CAS  PubMed  Google Scholar 

  118. Pita-Almenar, J. D., Collado, M. S., Colbert, C. M. & Eskin, A. Different mechanisms exist for the plasticity of glutamate reuptake during early long-term potentiation (LTP) and late LTP. J. Neurosci. 26, 10461–10471 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Genoud, C. et al. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol. 4, e343 (2006).

    PubMed  PubMed Central  Google Scholar 

  120. Shen, Y. & Linden, D. J. Long-term potentiation of neuronal glutamate transporters. Neuron 46, 715–722 (2005).

    CAS  PubMed  Google Scholar 

  121. Miller, H. P., Levey, A. I., Rothstein, J. D., Tzingounis, A. V. & Conn, P. J. Alterations in glutamate transporter protein levels in kindling-induced epilepsy. J. Neurochem. 68, 1564–1570 (1997).

    CAS  PubMed  Google Scholar 

  122. Crino, P. B. et al. Increased expression of the neuronal glutamate transporter (EAAT3/EAAC1) in hippocampal and neocortical epilepsy. Epilepsia 43, 211–218 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, G., Raol, Y. S., Hsu, F. C. & Brooks-Kayal, A. R. Long-term alterations in glutamate receptor and transporter expression following early-life seizures are associated with increased seizure susceptibility. J. Neurochem. 88, 91–101 (2004).

    CAS  PubMed  Google Scholar 

  124. Xu, N. J. et al. Morphine withdrawal increases glutamate uptake and surface expression of glutamate transporter GLT1 at hippocampal synapses. J. Neurosci. 23, 4775–4784 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Tsvetkov, E., Shin, R. M. & Bolshakov, V. Y. Glutamate uptake determines pathway specificity of long-term potentiation in the neural circuitry of fear conditioning. Neuron 41, 139–151 (2004).

    CAS  PubMed  Google Scholar 

  126. Asztely, F., Erdemli, G. & Kullmann, D. M. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18, 281–293 (1997).

    CAS  PubMed  Google Scholar 

  127. Diamond, J. S. & Jahr, C. E. Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation. J. Neurophysiol. 83, 2835–2843 (2000).

    CAS  PubMed  Google Scholar 

  128. Aoyama, K. et al. Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nature Neurosci. 9, 119–126 (2006). This article demonstrated that neuronal transporters serve as a route for cysteine uptake in neurons, possibly preventing neuronal degeneration.

    CAS  PubMed  Google Scholar 

  129. Wadiche, J. I. & Kavanaugh, M. P. Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J. Neurosci. 18, 7650–7661 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Watzke, N., Rauen, T., Bamberg, E. & Grewer, C. On the mechanism of proton transport by the neuronal excitatory amino acid carrier 1. J. Gen. Physiol. 116, 609–622 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bergles, D. E., Tzingounis, A. V. & Jahr, C. E. Comparison of coupled and uncoupled currents during glutamate uptake by GLT-1 transporters. J. Neurosci. 22, 10153–10162 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Larsson, H. P., Tzingounis, A. V., Koch, H. P. & Kavanaugh, M. P. Fluorometric measurements of conformational changes in glutamate transporters. Proc. Natl Acad. Sci. USA 101, 3951–3956 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Picaud, S., Larsson, H. P., Wellis, D. P., Lecar, H. & Werblin, F. Cone photoreceptors respond to their own glutamate release in the tiger salamander. Proc. Natl Acad. Sci. USA 92, 9417–9421 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Eliasof, S. & Jahr, C. E. Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc. Natl Acad. Sci. USA 93, 4153–4158 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Clark, B. A. & Barbour, B. Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices. J. Physiol. 502, 335–350 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bergles, D. E., Dzubay, J. A. & Jahr, C. E. Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate. Proc. Natl Acad. Sci. USA 94, 14821–14825 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bergles, D. E. & Jahr, C. E. Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19, 1297–1308 (1997).

    CAS  PubMed  Google Scholar 

  138. Wadiche, J. I., Tzingounis, A. V. & Jahr, C. E. Intrinsic kinetics determine the time course of neuronal synaptic transporter currents. Proc. Natl Acad. Sci. USA 103, 1083–1087 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Diamond, J. S. Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development. J. Neurosci. 25, 2906–2916 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Mennerick, S. et al. Substrate turnover by transporters curtails synaptic glutamate transients. J. Neurosci. 19, 9242–9251 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Tzingounis, A. V. Kinetic Mechanism and Modulation of Glutamate Transporters. Thesis, Vollum Institute (2002).

    Google Scholar 

  142. Grewer, C., Watzke, N., Wiessner, M. & Rauen, T. Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc. Natl Acad. Sci. USA 97, 9706–9711 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Mim, C., Balani, P., Rauen, T. & Grewer, C. The glutamate transporter subtypes EAAT4 and EAATs 1–3 transport glutamate with dramatically different kinetics and voltage dependence but share a common uptake mechanism. J. Gen. Physiol. 126, 571–589 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Clements, J. D., Lester, R. A., Tong, G., Jahr, C. E. & Westbrook, G. L. The time course of glutamate in the synaptic cleft. Science 258, 1498–1501 (1992).

    CAS  PubMed  Google Scholar 

  145. Rusakov, D. A. & Kullmann, D. M. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J. Neurosci. 18, 3158–3170 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Diamond, C. Jahr, M. Kavanaugh and K. Matsui for discussions and K. Menuz and members of the Wadiche labs for discussions and comments on the manuscript. We would also like to thank S. Rudolph for providing the original artwork for figures 3, 4 and 5 and boxes 1 and 2. Finally, we would like to especially thank L. O. Wadiche for her help and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques I. Wadiche.

Supplementary information

Supplementary information S1 (Box)

Glutamate transporter affinity constants (PDF 114 kb)

Related links

Related links

FURTHER INFORMATION

Jacques I. Wadiche's homepage

Glossary

Reversal potential

The membrane potential when there is no net flow of ions across the membrane. Current flows in opposite directions above and below the reversal potential.

Zero-flux equation

An equation that defines the thermodynamic equilibrium membrane potential when the influx of glutamate to the cytosol equals the efflux of glutamate to the extracellular space.

Fluorescence resonance energy transfer

(FRET). Also known as Förster resonance energy transfer. A spectroscopic technique that uses the direct transfer of energy from one fluorophore to another to measure the distance between the fluorophores.

Electrogenic process

A process that produces a net charge movement across the membrane electric field.

Cycling rate

The recovery time of the peak transporter current, measured using a paired-pulse application protocol. It defines the maximum rate at which a transporter will become available to bind a second molecule of glutamate, regardless of whether the first molecule is transported or unbound outside.

Turnover rate

The rate at which a transporter binds glutamate, transports it and then becomes available for another transport cycle.

Capture efficiency

The probability that a glutamate molecule bound to a transporter will be transported into the cytosol rather than be unbound back into the extracellular space.

Excitatory postsynaptic current (EPSC)

The current through the excitatory synaptic conductance, as recorded in voltage clamp. In current clamp, the current through this conductance results in an excitatory postsynaptic potential — that is, it depolarizes the neuron.

Field stimulation

Synchronous activation of a population of neurons.

Synaptic transporter currents

(STCs). Glutamate transporter currents that are obtained in either glia or neurons in response to synaptic stimulation.

Heteroexchange

The process by which an inwardly transported substrate leads to the efflux of another substrate by the same transporter.

Zebrin II

A brain-specific glycolytic isoenzyme, also known as aldolase C, that exemplifies the heterogeneity of Purkinje cells.

Shunting inhibition

A conductance change that inhibits further activity because more current is required to change the membrane potential.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzingounis, A., Wadiche, J. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8, 935–947 (2007). https://doi.org/10.1038/nrn2274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing