Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Late-phase long-term potentiation: getting to the nucleus

Abstract

New mRNA must be transcribed in order to consolidate changes in synaptic strength. But how are events at the synapse communicated to the nucleus? Some research has shown that proteins can move from activated synapses to the nucleus. However, other work has shown that action potentials can directly inform the nucleus about cellular activation. Here we contend that action potential-induced signalling to the nucleus best meets the requirements of the consolidation of synapse-specific plasticity, which include both timing and stoichiometric constraints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: What is late-phase long-term potentiation?
Figure 2: Synapse-to-nucleus versus action potential-mediated signalling

Similar content being viewed by others

References

  1. Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Sweatt, J. D. (ed.) in Mechanisms of Memory 263–305 (Elsevier/Academic, San Diego, USA, 2003).

    Book  Google Scholar 

  3. Shapiro, M. L. & Eichenbaum, H. Hippocampus as a memory map: synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus 9, 365–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Milner, B., Squire, L. R. & Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron 20, 445–468 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Krug, M., Lossner, B. & Ott, T. Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res. Bull. 13, 39–42 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Teyler, T. J. & DiScenn, P. Long-term potentiation. Annu. Rev. Neurosci. 10, 131–161 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Abraham, W. C. & Williams, J. M. Properties and mechanisms of LTP maintenance. Neuroscientist 9, 463–474 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Dudek, S. M. & Fields, R. D. Gene expression in hippocampal long-term potentiation. Neuroscientist 5, 275–279 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kelleher, R. J., Govindarajan, A. & Tonegawa, S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44, 59–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Steward, O. & Schuman, E. M. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–359 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Frey, U., Krug, M., Brodemann, R., Reymann, K. & Matthies, H. Long-term potentiation induced in dendrites separated from rat's CA1 pyramidal somata does not establish a late phase. Neurosci. Lett. 97, 135–139 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Frey, J. U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Sajikumar, S. & Frey, J. U. Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem. 82, 12–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Worley, P. F. et al. Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement. J. Neurosci. 13, 4776–4786 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steward, O. & Worley, P. F. Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30, 227–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Matsuo, R., Murayama, A., Saitoh, Y., Sakaki, Y. & Inokuchi, K. Identification and cataloging of genes induced by long-lasting long-term potentiation in awake rats. J. Neurochem. 74, 2239–2249 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Martin, K. C. et al. Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91, 927–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Martin, K. C. et al. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 18, 899–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Deisseroth, K., Mermelstein, P. G., Xia, H. & Tsien, R. W. Signaling from synapse to nucleus: the logic behind the mechanisms. Curr. Opin. Neurobiol. 13, 354–365 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Meffert, M., Chang, J. M., Wiltgen, B. J., Fanselow, M. S. & Baltimore, D. NF-κB functions in synaptic signaling and behavior. Nature Neurosci. 6, 1072–1078 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Thompson, K. R. et al. Synapse to nucleus signaling during long-term synaptic plasticity: a role for the classical active nuclear import pathway. Neuron 44, 997–1009 (2004).

    CAS  PubMed  Google Scholar 

  22. Phair, R. D. et al. Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell Biol. 24, 6393–6402 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Misteli, T. Protein dynamics: implications for nuclear architecture and gene expression. Science 291, 843–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Frey, U., Schroeder, H. & Matthies, H. Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices. Brain Res. 522, 69–75 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Dudek, S. M. & Fields, R. D. Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc. Natl Acad. Sci. USA 99, 3962–3967 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosenblum, K. et al. The role of extracellular regulated kinases I/II in late-phase long-term potentiation. J. Neurosci. 22, 5432–5411 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Graef, I. A. et al. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401, 703–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Deisseroth, K., Heist, E. K. & Tsien, R. W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Hardingham, G. E., Arnold, F. J. L. & Bading, H. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nature Neurosci. 4, 261–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Misra, R. P. et al. L-type voltage-sensitive calcium channel activation stimulates gene expression by a serum response factor-dependent pathway. J. Biol. Chem. 269, 25483–25493 (1994).

    CAS  PubMed  Google Scholar 

  31. Dolmetsch, R. E., Pajvani, U., Fife, K., Spotts, J. M. & Greenberg, M. E. Signaling to the nucleus by an L-type calcium channel–calmodulin complex through the MAP kinase pathway. Science 294, 318–319 (2001).

    Article  Google Scholar 

  32. Matias, C. M., Dionisio, J. C., Arif, M. & Quinta-Ferreira, M. E. Effect of D-2 amino-5-phosphonopentanoate and nifedipine on postsynaptic calcium changes associated with long-term potentiation in hippocampal CA1 area. Brain Res. 976, 90–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Bading, H. Transcription-dependent neuronal plasticity: the nuclear calcium hypothesis. Eur. J. Biochem. 267, 5280–5283 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Dudek, S. M. & Fields, R. D. Mitogen-activated protein kinase/extracellular signal-regulated kinase activation in somatodendritic compartments: roles of action potentials, frequency, and mode of calcium entry. J. Neurosci. 21, RC122 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dan, Y. & Poo, M. M. Spike timing-dependent plasticity of neural circuits. Neuron 44, 23–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen, P. V., Abel, T. & Kandel, E. R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Frey, U., Frey, S., Schollmeier, F. & Krug, M. Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. J. Physiol. (Lond.) 490, 703–711 (1996).

    Article  CAS  Google Scholar 

  38. Frey, U., Krug, M., Reymann, K. G. & Matthies, H. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 452, 57–65 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Otani, S., Marshall, C. J, Tate, W. P, Goddard, G. V & Abraham, W. C. Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization. Neuroscience 28, 519–526 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Guzowski, J. F., McNaughton, B. L., Barnes, C. A. & Worley, P. F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nature Neurosci. 2, 1120–1124 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Steward, O., Wallace, C. S., Lyford, G. L. & Worley, P. F. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741–751 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Guzowski, J. F. et al. Inhibition of activity-dependent Arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Richardson, C. L. et al. Correlation between the induction of an immediate early gene, zif/268, and long-term potentiation in the dentate gyrus. Brain Res. 580, 147–154 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Guzowski, J. F., Setlow, B., Wagner, E. K. & McGaugh, J. L. Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J. Neurosci. 21, 5089–5098 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jones, M. W. et al. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nature Neurosci. 4, 289–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Turner, R. W., Meyers, D. E., Richardson, T. L. & Barker, J. L. The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. J. Neurosci. 11, 2270–2280 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taniguchi, M. et al. Gene expression profiling of the rat hippocampal CA1 slices after conditioning that induces L-LTP. Soc. Neurosci. Abstr. 19.4 (2004).

  49. Kaether, C., Skehel, P. A. & Dotti, C. G. Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol. Biol. Cell 11, 1213–1224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kohrmann, M. et al. Microtubule-dependent recruitment of Staufen-green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol. Biol. Cell 10, 2945–2953 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown, A. Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J. Cell Biol. 160, 817–821 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tytell, M., Black, M. M., Grarner, J. A. & Lasek, R. J. Axonal transport: each major rate component reflects the movement of distinct macromolecular complexes. Science 214, 179–181 (1981).

    Article  CAS  PubMed  Google Scholar 

  53. Kasahara, J., Fukunaga, K. & Miyamoto, E. Activation of calcium/calmodulin-dependent protein kinase IV in long term potentiation in the rat hippocampal CA1 region. J. Biol. Chem. 276, 24044–24050 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Kang, H. et al. An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell 106, 771–783 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Uezu, A., Fukunaga, K., Kasahara, J. & Miyamoto, E. Activation of Ca2+/calmodulin-dependent protein kinase I in cultured rat hippocampal neurons. J. Neurochem. 82, 585–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Schmitt, J. M., Guire, E. S., Saneyoshi, T. & Soderling, T. R. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation. J. Neurosci. 25, 1281–1290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Limback-Stokin, K., Korzus, E., Nagaoka-Yasuda, R. & Mayford, M. Nuclear calcium/calmodulin regulates memory consolidation. J. Neurosci. 24, 10858–10867 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Zhao, M., Adams, J. P. & Dudek, S. M. Pattern-dependent role of NMDA receptors in action potential generation: consequences on ERK activation. J. Neurosci. 25, 7032–7039 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burgard, E. C., Decker, G. & Sarvey, J. M. NMDA receptor antagonists block norepinephrine-induced long-lasting potentiation and long-term potentiation in rat dentate gyrus. Brain Res. 482, 351–355 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Dahl, D., Burgard, E. C. & Sarvey, J. M. NMDA receptor antagonists reduce medial, but not lateral, perforant path-evoked EPSPs in dentate gyrus of rat hippocampal slice. Exp. Brain Res. 83, 172–177 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Miller, K. D., Chapman, B. & Stryker, M. P. Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors. Proc. Natl Acad. Sci. USA 86, 5183–5187 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. English, J. D. & Sweatt, J. D. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 271, 24329–24332 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Turrigiano, G. G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Abraham, W. C., Mason-Parker, S. E., Bear, M. F., Webb, S. & Tate, W. P. Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP. Proc. Natl Acad. Sci. USA 98, 10924–10929 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Maffei, A., Nelson, S. B. & Turrigiano, G. G. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nature Neurosci. 7, 1353–1359 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Nedivi, E., Hevroni, D., Naot, D., Israeli, D. & Citri, Y. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363, 718–722 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Hsueh, Y. P., Wang, T. F., Yang, F. C. & Sheng, M. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature 404, 298–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Tsui-Pierchala, B. A. & Ginty, D. D. Characterization of an NGF-P-TrkA retrograde-signaling complex and age-dependent regulation of TrkA phosphorylation in sympathetic neurons. J. Neurosci. 19, 8207–8218 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Patterson, S. L. et al. Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32, 123–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, G. S. et al. Transcriptional modification by a CASK-interacting nucleosome assembly protein. Neuron 42, 113–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Bading, H. et al. N-methyl-D-aspartate receptors are critical for mediating the effects of glutamate on intracellular calcium concentration and immediate-early gene-expression in cultured hippocampal neurons. Neuroscience 64, 653–664 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Kapinya, K., Penzel, R., Sommer, C. & Kiessling, M. Temporary changes of the AP-1 transcription factor binding activity in the gerbil hippocampus after transient global ischemia, and ischemic tolerance induction. Brain Res. 872, 282–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Kury, P., Schroeter, M. & Jander, S. Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote non-ischemic cortex. Eur. J. Neurosci. 19, 1708–1720 (2004).

    Article  PubMed  Google Scholar 

  75. Hardingham, G. E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nature Neurosci. 5, 405–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Hardingham, G. E. & Bading, H. The yin and yang of NMDA receptor signalling. Trends Neurosci. 26, 81–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Choudhuri, R. et al. Cortical spreading depression and gene regulation: relevance to migraine. Ann. Neurol. 51, 499–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Sanchez-del-Rio, M. & Reuter, U. Migraine aura: new information on underlying mechanisms. Curr. Opin. Neurol. 17, 289–293 (2004).

    Article  PubMed  Google Scholar 

  79. Rosen, L. B., Ginty, D. D., Weber, M. J. & Greenberg, M. E. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207–1221 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. West, A. E. et al. Calcium regulation of neuronal gene expression. Proc. Natl Acad. Sci. USA 98, 11024–11031 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eshete, F. & Fields, R. D. Spike frequency decoding and autonomous activation of Ca2+-calmodulin-dependent protein kinase II in dorsal root ganglion neurons. J. Neurosci. 21, 6694–6705 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, W., Llopis, J., Whitney, M., Zlokarnik, G. & Tsien, R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Carlotti, F., Chapman, R., Dower, S. K. & Qwarnstrom, E. E. Activation of nuclear factor κB in single living cells. Dependence of nuclear translocation and anti-apoptotic function on EGFPRELA concentration. J. Biol. Chem. 274, 37941–37949 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Darden, D. Armstrong and T. Archer for their helpful discussions. Sizes of spines and nuclei were obtained from the Atlas of Ultrastructural Neurocytology and Synapse Web.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena M. Dudek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

APP

Arc

CaMKIV

CASK

CREB

ERK

NF-κB

Staufen

Zif268

FURTHER INFORMATION

Atlas of Ultrastructural Neurocytology

Synapse Web

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, J., Dudek, S. Late-phase long-term potentiation: getting to the nucleus. Nat Rev Neurosci 6, 737–743 (2005). https://doi.org/10.1038/nrn1749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing