Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

14-3-3 proteins in the nervous system

Key Points

  • 14-3-3 proteins are involved in the control of the cell cycle, transcription and apoptosis. Owing to their multiple interactions with various kinases, receptors, enzymes and structural and cytoskeletal proteins. Although the precise role of 14-3-3 proteins is not fully understood, they seem to control the subcellular localization of proteins and to function as adaptor molecules, stimulating protein–protein interactions.

  • There are seven known members of the 14-3-3 family, but genomic analysis points to the existence of several more. Crystallographic analysis of 14-3-3 proteins has led to the elucidation of their three-dimensional topology, and the identification of the domains that are involved in their dimerization and in their interaction with ligands.

  • The function of 14-3-3 proteins in the brain remains obscure, but they seem to participate in various physiological cellular processes such as signalling, cell growth, division, adhesion, differentiation, apoptosis and regulation of ion channels.

  • The presence of 14-3-3 proteins in the cerebrospinal fluid of people with Creutzfeldt–Jakob disease has prompted the suggestions that these proteins might be involved in the pathogenesis of this condition and that they might serve as disease biomarkers. Although it is not clear yet whether these suggestions correspond to reality, 14-3-3 proteins have also been implicated in other conditions such as Alzheimer's and Parkinson's diseases, and spinocerebellar ataxia type 1.

  • Future studies should focus on defining the precise roles of 14-3-3 proteins in neuronal physiology, and should try to obtain evidence for a causal relationship between the activity of 14-3-3 proteins and the disease states in which they have been implicated.

Abstract

14-3-3 proteins are abundantly expressed in the brain and have been detected in the cerebrospinal fluid of patients with different neurological disorders. Although the function of this family of highly conserved proteins is not completely known, recent evidence indicates their involvement in multiple cellular processes. By their interaction with more than 100 binding partners, 14-3-3 proteins modulate the action of proteins that are involved in cell cycle and transcriptional control, signal transduction, intracellular trafficking and regulation of ion channels. The study of some of these interactions is sheding light on the role of 14-3-3 proteins in processes such as apoptosis and neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of a 14-3-3 dimer.
Figure 2: Phylogenetic tree of human 14-3-3 isoforms.
Figure 3: General role of 14-3-3 proteins in the mitogen-activated protein kinase (MAPK) pathway.
Figure 4: Role of 14-3-3 proteins in apoptosis.
Figure 5: Immunostaining of Lewy bodies in pigmented neurons of a patient with Parkinson's disease.
Figure 6: Involvement of 14-3-3 proteins in dopamine synthesis and neurodegeneration.

Similar content being viewed by others

References

  1. Yaffe, M. B. How do 14-3-3 proteins work? — Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513, 53–57 (2002). A structure-derived model of different forms of 14-3-3-ligand interaction.

    Article  CAS  PubMed  Google Scholar 

  2. van Hemert, M. J., Steensma, H. Y. & van Heusden, G. P. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays 23, 936–946 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Tzivion, G., Shen, Y. H. & Zhu, J. 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene 20, 6331–6338 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Moore, B. W. & Perez V. J. in Physiological and Biochemical Aspects of Nervous Integration (ed. Carlson, F. D.) 343–359 (Prentice-Hall, Englewood Cliffs, New Jersey, 1967). First description of 14-3-3 proteins in mammalian brains.

    Google Scholar 

  5. Martin, H. et al. Antibodies against the major brain isoforms of 14-3-3 protein. An antibody specific for the N-acetylated amino-terminus of a protein. FEBS Lett. 331, 296–303 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Aitken, A., Howell, S., Jones, D., Madrazo, J. & Patel, Y. 14-3-3 α and δ are the phosphorylated forms of raf-activating 14-3-3 β and ζ. In vivo stoichiometric phosphorylation in brain at a Ser-Pro-Glu-Lys motif. J. Biol. Chem. 270, 5706–5709 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Boston, P. F., Jackson, P. & Thompson, R. J. Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. J. Neurochem. 38, 1475–1482 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Baxter, H. C. et al. Specific 14-3-3 isoform detection and immunolocalization in prion diseases. Biochem. Soc. Trans. 30, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Fu, H., Subramanian, R. R. & Masters, S. C. 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617–647 (2000). Together, references 1, 2 and 10 provide excellent reviews discussing structure, function and the roles of 14-3-3 proteins in signal transdcution, cell-cycle control and apoptosis.

    Article  CAS  PubMed  Google Scholar 

  11. Liu, D. et al. Crystal structure of the ζ isoform of the 14-3-3 protein. Nature 376, 191–194 (1995). Together with reference 24, this is the first identification of the crystal structure of 14-3-3 isoforms and implications of the inherent functional importance.

    Article  CAS  PubMed  Google Scholar 

  12. Xiao, B. et al. Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature 376, 188–191 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Petosa, C. et al. 14-3-3ζ binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J. Biol. Chem. 273, 16305–16310 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, H., Zhang, L., Liddington, R. & Fu, H. Mutations in the hydrophobic surface of an amphipathic groove of 14-3-3ζ disrupt its interaction with Raf-1 kinase. J. Biol. Chem. 273, 16297–16304 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, W. & Shakes, D. C. Molecular evolution of the 14-3-3 protein family. J. Mol. Evol. 43, 384–398 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Brunet, A. et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmatic transport. J. Cell Biol. 156, 817–828 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aitken, A. Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants. Plant Mol. Biol. 50, 993–1010 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Muslin, A. J., Tanner, J. W., Allen, P. M. & Shaw, A. S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Yaffe, M. B. et al. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91, 961–971 (1997). First identification of the structural basis of specific interactions between 14-3-3s and its target proteins.

    Article  CAS  PubMed  Google Scholar 

  20. Truong, A. B., Masters, S. C., Yang, H. & Fu, H. Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins 49, 321–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Obsil, T., Ghirlando, R., Klein, D. C., Ganguly, S. & Dyda, F. Crystal structure of the 14-3-3ζ: serotonin N-acetyltransferase complex: a role for scaffolding in enzyme regulation. Cell 105, 257–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Ganguly, S. et al. Role of a pineal cAMP-operated arylalkylamine N-acetyltransferase/14-3-3-binding switch in melatonin synthesis. Proc. Natl Acad. Sci. USA 98, 8083–8088 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones, D. H., Ley, S. & Aitken, A. Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: implications for function as adaptor proteins. FEBS Lett. 368, 55–58 (1995). First evidence that 14-3-3 proteins form homo- and heterodimers with pioneering implications for different modes of action.

    Article  CAS  PubMed  Google Scholar 

  24. Vincenz, C. & Dixit, V. M. 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J. Biol. Chem. 271, 20029–20034 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Ferl, R. J., Manak, M. S. & Reyes, M. F. The 14-3-3s. Genome Biol. 3, R3010.1–3010.7 (2002).

    Article  Google Scholar 

  26. Rosenquist, M., Sehnke, P., Ferl, R. J., Sommarin, M. & Larsson, C. Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity? J. Mol. Evol. 51, 446–458 (2000). Detailed examination of 14-3-3 isoforms and species specificity.

    Article  CAS  PubMed  Google Scholar 

  27. Aitken, A. 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends Cell Biol. 6, 341–347 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Niu, J. et al. RGS3 interacts with 14-3-3 via the N-terminal region distinct from the RGS (regulator of G-protein signalling) domain. Biochem. J. 365, 677–684 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Toska, K. et al. Regulation of tyrosine hydroxylase by stress-activated protein kinases. J. Neurochem. 83, 775–783 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Zhu, P. et al. The interaction between ADAM 22 and 14-3-3ζ: regulation of cell adhesion and spreading. Biochem. Biophys. Res. Commun. 301, 991–999 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Bunney, T. D., van den Wijngaard, P. W. & de Boer, A. H. 14-3-3 protein regulation of proton pumps and ion channels. Plant Mol. Biol. 50, 1041–1051 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Fantl, W. J. et al. Activation of Raf-1 by 14-3-3 proteins. Nature 371, 612–614 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Irie, K. et al. Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science 265, 1716–1719 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Morrison, D. K. & Cutler, R. E. The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. 9, 174–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Williams, N. G. & Roberts, T. M. Signal transduction pathways involving the Raf proto-oncogene. Cancer Metastasis Rev. 13, 105–116 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Yip-Schneider, M. T. et al. Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochem. J. 351, 151–159 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Braselmann, S. & McCormick, F. Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J. 14, 4839–4848 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamamori, B. et al. Purification of a Ras-dependent mitogen-activated protein kinase kinase kinase from bovine brain cytosol and its identification as a complex of B-Raf and 14-3-3 proteins. J. Biol. Chem. 270, 11723–11726 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Xing, H., Kornfeld, K. & Muslin, A. J. The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr. Biol. 7, 294–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Kiryu, S., Morita, N., Ohno, K., Maeno, H. & Kiyama, H. Regulation of mRNA expression involved in Ras and PKA signal pathways during rat hypoglossal nerve regeneration. Brain Res. Mol. Brain Res. 29, 147–156 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Dhillon, A. S. et al. A Raf-1 mutant that dissociates MEK/extracellular signal-regulated kinase activation from malignant transformation and differentiation but not proliferation. Mol. Cell. Biol. 23, 1983–1993 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dhaka, A. et al. The RAS effector RIN1 modulates the formation of aversive memories. J. Neurosci. 23, 748–757 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Namikawa, K., Su, Q., Kiryu-Seo, S. & Kiyama, H. Enhanced expression of 14-3-3 family members in injured motoneurons. Brain Res. Mol. Brain Res. 55, 315–320 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Cavet, M. E., Lehoux, S. & Berk, B. C. 14-3-3β is a p90 ribosomal S6 kinase isoform 1 (RSK1) binding protein that negatively regulates RSK kinase activity. J. Biol. Chem. 16, 18376–18386 (2003).

    Article  CAS  Google Scholar 

  45. Goossens, J. et al. Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J. Neurosci. 21, 5813–5823 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ling, D. S. et al. Protein kinase Mζ is necessary and sufficient for LTP maintenance. Nature Neurosci. 5, 295–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Colombo, P. J., Wetsel, W. C. & Gallagher, M. Spatial memory is related to hippocampal subcellular concentrations of calcium-dependent protein kinase C isoforms in young and aged rats. Proc. Natl Acad. Sci. USA 94, 14195–14199 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Routtenberg, A., Cantallops, I., Zaffuto, S., Serrano, P. & Namgung, U. Enhanced learning after genetic overexpression of a brain growth protein. Proc. Natl Acad. Sci. USA 97, 7657–7662 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dai, J. G. & Murakami K. Constitutively and autonomously active protein kinase C associated with 14-3-3ζ in the rodent brain. J. Neurochem. 84, 23–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, D. -H. et al. Missense mutations in the regulatory domain of PKCγ: a new mechanism for dominant nonepisodic cerebellar ataxia. Am. J. Hum. Genet. 72, 839–949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL Cell 87, 619–628 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Nomura, M. et al. 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J. Biol. Chem. 278, 2058–2065 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, L., Chen, J. & Fu, H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc. Natl Acad. Sci. USA 96, 8511–8515 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Xing, H., Zhang, S., Weinheimer, C., Kovacs, A. & Muslin, A. J. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J. 19, 349–358 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Basu, S., Totty, N. F., Irwin, M. S., Sudol, M. & Downward, J. Akt phophorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell 11, 11–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Muslin, A. J. & Xing, H. 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal. 12, 703–709 (2000). Comprehensive review on the regulation of subcellular localization of ligands by 14-3-3 proteins.

    Article  CAS  PubMed  Google Scholar 

  58. Seimiya, H. et al. Involvement of 14-3-3 proteins in nuclear localization of telomerase. EMBO J. 19, 2652–2661 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, P., Chan, S. L., Fu, W., Mendoza, M. & Mattson, M. P. TERT suppresses apoptotis at a premitochondrial step by a mechanism requiring reverse transcriptase activity and 14-3-3 protein binding ability. FASEB J. 17, 767–769 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Kimura, M. T. et al. 14-3-3 is involved in p75 neurtorphin receptor-mediated signal transduction. J. Biol. Chem. 276, 17291–17300 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Marra, M. et al. The 30-kilodalton protein present in purified fusicoccin receptor preparations is a 14-3-3-like protein. Plant Physiol. 106, 1497–501 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Booij, P. P., Roberts, M. R., Vogelzang, S. A., Kraayenhof, R. & De Boer, A. H. 14-3-3 proteins double the number of outward-rectifying K+ channels available for activation in tomato cells Plant J. 20, 673–683 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Chan, H. C. et al. Modulation of the Ca2+-activated Cl− channel by 14-3-3ε. Biochem. Biophys. Res. Commun. 270, 581–587 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Zhou, Y. et al. A dynamically regulated 14-3-3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron 22, 809–818 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Sugita, W., Karoulias, N., Aitken, A. & Ashley, R. H. Chloride intracellular channel protein (CLIC4) (p64H1) binds directly to braindynamin I in a complex containing actin, tubulin and 14-3-3 isoforms. Biochem. J. 359, 55–64 (2001).

    Article  Google Scholar 

  66. Kagan, A., Melman, Y. F., Krumerman, A. & McDonald, T. V. 14-3-3 amplifies and prolongs adrenergic stimulation of HERG K+ channel activity. EMBO J. 21, 1889–1898 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rajan, S. et al. Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J. Physiol. (Lond.) 545, 13–26 (2002). An excellent study determining a new mode of action of 14-3-3 proteins in mammalian brains in the control of membrane localization and functional expression of ion channels.

    Article  CAS  Google Scholar 

  68. Goldstein, S. A. N. et al. Potassium leak channels and the KCNK family of two-P-domain subunits. Nature Rev. Neurosci. 2, 175–184 (2001).

    Article  CAS  Google Scholar 

  69. Lopez, C. J. A new TASK for 14-3-3 proteins. Nature Rev. Neurosci. 3, 915 (2002).

    Article  CAS  Google Scholar 

  70. Kim, Y., Bang, H. & Kim, D. TASK-3 a new member of the tandem pore K+ channel family. J. Biol. Chem. 275, 9340–9347 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Rajan, S. et al. TASK-3, a novel tandem pore domain acid-sensitive K+ channel — an extracellular histidine as pH sensor. J. Biol. Chem. 275, 16650–16657 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Skoulakis, E. M. & Davis, R. L. 14-3-3 proteins in neuronal development and function. Mol. Neurobiol. 16, 269–284 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Peyril, A., Weitzdoerfer, R., Gulesserian, T., Fountoulakis, M. & Lubec G. Aberrant expression of signaling-related proteins 14-3-3γ and RACK1 in fetal Down syndrome brain (trisomy 21). Electrophoresis 23, 152–157 (2002).

    Article  Google Scholar 

  74. Kato, M. & Dobyns, W. B. Lissencephaly and the molecular basis of neuronal migration. Hum. Mol. Genet. 12, R89–R96 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Toyo-oka, K. et al. 14-3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nature Genet. 34, 274–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Will, R. G. Epidemiology of Creutzfeld-Jakob disease. Br. Med. Bull. 49, 960–970 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Kretzschmar, H. A., Ironside, J. W., DeArmond, S. J. & Tateishi, J. Diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Arch. Neurol. 53, 913–920 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Harrington, M. G., Merril, C. R., Asher, D. M. & Gajdusek, D. C. Abnormal proteins in the cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. N. Engl. J. Med. 315, 279–283 (1986).

    Article  CAS  PubMed  Google Scholar 

  79. Hsich, G., Kenney, K., Gibbs, C. J., Lee, K. H. & Harrington, M. G. The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N. Engl. J. Med. 335, 24–30 (1996). First identification of 14-3-3 proteins as a CSF marker for transmissible spongiform encephalopathies and development of a simple immunoassay for rapid detection.

    Article  Google Scholar 

  80. Zerr, I. et al. Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt–Jakob disease. Ann. Neurol. 43, 32–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Beaudry, P. et al. 14-3-3 protein, neuron-specific enolase, and S-100 protein in cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Dement. Geriatr. Cogn. Disord. 10, 40–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Brandel, J. P., Delasnerie-Laupretre, N., Laplanche, J. L., Hauw, J. J. & Alperovitch, A. Diagnosis of Creutzfeldt–Jakob disease: effect of clinical criteria on incidence estimates. Neurology 54, 1095–1099 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Lemstra, A. W. et al. 14-3-3 testing in diagnosing Creutzfeldt–Jakob disease: a prospective study in 112 patients. Neurology 55, 514–516 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. World Health Organization. Global surveillance, diagnosis and therapy of human transmissible spongiform encephalopathies: Report of a WHO consultation WHO/EMC/ZDI/98/9 (World Health Organization, Geneva, 1998). Incorporation of a positive CSF 14-3-3 result into the standard diagnostic criteria for sporadic CJD as a convenient and more sensitive alternative to the typical periodic EEG pattern.

  85. Burkhard, P. R., Sanchez, J. C., Landis, T. & Hochstrasser, D. F. CSF detection of the 14-3-3 protein in unselected patients with dementia. Neurology 56, 1528–1533 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Will, R. G. et al. Diagnosis of new variant of Creutzfeldt–Jakob disease. Ann. Neurol. 47, 575–582 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Green, A. J. et al. Use of 14-3-3 and other brain-specific proteins in CSF in the diagnosis of variant Creutzfeldt–Jakob disease. J. Neurol. Neurosurg. Psychiatry 70, 744–748 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Green, A. J., Ramljak, S., Muller, W. E., Knight, R. S. & Schroder H. C. 14-3-3 in the cerebrospinal fluid of patients with variant and sporadic Creutzfeldt-Jakob disease measured using capture assay able to detect low levels of 14-3-3 protein. Neurosci. Lett. 324, 57–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Collins, S. et al. Creutzfeld–Jakob diease: diagnostic utility of 14-3-3 immunodetection in cerbrospinal fluid. J. Clin. Neurosci. 7, 203–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Haik, S. et al. Dementia with Lewy bodies in a neuropathologic series of suspected Creutzfeldt–Jakob disease. Neurology 55, 1401–1404 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Kenney, K. et al. An enzyme-linked immunosorbent assay to quantify 14-3-3 proteins in the cerebrospinal fluid of suspected Creutzfeldt–Jakob disease patients. Ann. Neurol. 48, 395–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Wiltfang, J. et al. Isoform pattern of 14-3-3 proteins in the cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. J. Neurochem. 73, 2485–2490 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Baxter, H. C., Liu, W. G., Forster, J. L., Aitken, A. & Fraser, J. R. Immunolocalisation of 14-3-3 isoforms in normal and scrapie-infected murine brain. Neuroscience 109, 5–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Richard, M. et al. Immunohistochemical localization of 14.3.3ζ protein in amyloid plaques in human spongiform encephalopathies. Acta Neuropathol. 105, 296–302 (2003).

    CAS  PubMed  Google Scholar 

  95. Pietromonaco, S. F., Seluja, G. A., Aitken, A. & Elias, L. Association of 14-3-3 proteins with centrosomes. Blood Cells Mol. Dis. 22, 225–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Martin, H., Rostas, J., Patel, Y. & Aitken, A. Subcellular localisation of 14-3-3 isoforms in rat brain using specific antibodies. J. Neurochem. 63, 2259–2265 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Jones, D. H. et al. Expression and structural analysis of 14-3-3 proteins. J. Mol. Biol. 245, 375–384 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Moya, K. L. et al. Immunolocalization of the cellular prion protein in normal brain. Microsc. Res. Tech. 50, 58–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Goedert, M. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci. 16, 460–465 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Alonso, A. C., Zaidi, T., Grundke-Iqbal, I. & Iqbal, K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc. Natl Acad. Sci. USA 91, 5562–5566 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hirokawa, N. Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr. Opin. Cell Biol. 6, 74–81 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, V. M. Disruption of the cytoskeleton in Alzheimer's disease. Curr. Opin. Neurobiol. 5, 663–668 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Lee, V. M., Goedert, M. & Trojanowski, J. Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, J. Z., Gong, C. X., Zaidi, T., Grundke-Iqbal, I. & Iqbal, K. Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J. Biol. Chem. 270, 4854–4860 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Hashiguchi, M., Sobue, K. & Paudel, H. K. 14-3-3ζ is an effector of tau protein phosphorylation. J. Biol. Chem. 275, 25247–25254 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Fountoulakis, M., Cairns, N. & Lubec, G. Increased levels of 14-3-3γ and ε proteins in brain of patients with Alzheimer's disease and Down syndrome. J. Neural. Transm. Suppl. 57, 323–335 (1999).

    CAS  PubMed  Google Scholar 

  107. Layfield, R. et al. Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins. Neurosci. Lett. 209, 57–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Paudel, H. K. Phosphorylation by neuronal cdc2-like protein kinase promotes dimerization of Tau protein in vitro . J. Biol. Chem. 272, 28328–28334 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Sun, W. et al. Glycogen synthase kinase-3β is complexed with tau protein in brain microtubules. J. Biol. Chem. 277, 11933–11940 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Agarwal-Mawal, A. et al. 14-3-3 connects glycogen synthase kinase-3β to tau within a brain microtubule-associated tau phosphorylation complex. J. Biol. Chem. 11, 12722–12728 (2003). In vivo and in vitro study on the possible pathophysiological relevance of 14-3-3 proteins on tau phosphorlylation. 14-3-3ζ was shown to be part of a tau-phosphorylation complex in bovine brain and suggested to facilitate tau phophorylation.

    Article  CAS  Google Scholar 

  111. Luo, Z. et al. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383, 181–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Dent, P., Jelinek, T., Morrison, D. K., Weber, M. J. & Sturgill, T. W. Reversal of Raf-1 activation by purified and membrane-associated protein phosphatases. Science 268, 1902–1906 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Tschampa, H. J. et al. Patients with Alzheimer's disease and dementia with Lewy bodies mistaken for Creutzfeldt–Jakob disease. J. Neurol. Neurosurg. Psychiatry 71, 33–39 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hughes, A. J., Ben-Shlomo, Y., Daniel, S. E. & Lees, A. J. What features improve the accuracy of clinical diagnosis in Parkinson's disease: a clinicopathologic study. Neurology 42, 1142–1146 (1992).

    Article  CAS  PubMed  Google Scholar 

  115. Jellinger, K. A. Pathology of Parkinson's disease. Changes other than the nigrostriatal pathway. Mol. Chem. Neuropathol. 14, 153–197 (1991).

    Article  CAS  PubMed  Google Scholar 

  116. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  117. McKeith. I. G. et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 47, 1113–1124 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Kawamoto, Y. et al. 14-3-3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease brains. J. Neuropathol. Exp. Neurol 61, 245–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Ubl, A. et al. 14-3-3 protein is a component of Lewy bodies in Parkinson's disease–mutation analysis and association studies of 14-3-3η. Brain Res. Mol. Brain Res. 108, 33–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Berg, D., Riess, O. & Bornemann, A. Specification of 14-3–3 proteins in Lewy bodies. Ann. Neurol. 53, 135 (2003).

    Article  Google Scholar 

  121. Ostrerova, N. et al. α-Synuclein shares physical and functional homology with 14-3-3 proteins. J. Neurosci. 19, 5782–5791 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ichimura, T. et al. Molecular cloning fo c-DNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc. Natl Acad. Sci. USA 85, 7084–7088 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yamauchi, T., Nakata, H. & Fuijsawa, H. A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase. Purification and characterization. J. Biol. Chem. 256, 5404–5409 (1981).

    CAS  PubMed  Google Scholar 

  124. Ichimura, T. et al. Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase II. FEBS Lett. 219, 79–82 (1987). First study to assign a specific role to 14-3-3 proteins.

    Article  CAS  PubMed  Google Scholar 

  125. Kleppe, R., Toska, K. & Haavik, J. Interaction of phosphorylated tyrosine hydroxylase with 14-3-3 proteins: evidence for a phosphoserine 40-dependent association. J. Neurochem. 77, 1097–1107 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Perez, R. G. et al. A role for α-synuclein in the regulation of dopamine biosynthesis. J. Neurosci. 22, 3090–3099 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Welch, K. & Yuan, J. Releasing the nerve cell killers. Nature Med. 8, 564–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Xu, J. et al. Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nature Med. 8, 600–606 (2002). Important study indicating a mechanism of selective neurodegeneration of dopaminergic cells of the substantia nigra in PD. α-Synuclein is shown to sequester 14-3-3 protein in this part of the brain, thereby freeing up proteins that promote apoptosis.

    Article  CAS  PubMed  Google Scholar 

  129. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genet. 18, 106–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Polymeropoulos, M. H., et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science. 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Holzmann, C. et al. Polymorphisms of the α-synuclein promoter: expression analyses and association studies in Parkinson's disease. J. Neural Transm. 110, 67–76 (2003).

    CAS  PubMed  Google Scholar 

  132. Krüger, R. et al. Increased susceptibility to sporadic Parkinson's disease by a certain combined α-synuclein/apolipoprotein E genotype. Ann. Neurol. 45, 611–617 (1999).

    Article  PubMed  Google Scholar 

  133. Paulson, H. L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19, 333–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Skinner, P. J. et al. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389, 971–974 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Holmberg, M. et al. Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum. Mol. Genet. 7, 913–918 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Chen, H. -K. et al. Interaction of Akt-phophorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113, 457–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. McCampbell, A. et al. CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197–2202 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Shimohata, T. et al. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nature Genet. 26, 29–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Grozinger, C. M. & Schreiber, S. L. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3 dependent cellular localization. Proc. Natl Acad. Sci. USA 97, 7835–7840 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dunah, A. W. et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 296, 2238–2243 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Steffan, J. S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila . Nature 413, 739–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Grove, V. E. Jr, Quintanilla, J. & DeVaney, G. T. Improvement of Huntington's disease with olanzapine and valproate. New Engl. J. Med. 343, 973–974 (2000).

    Article  PubMed  Google Scholar 

  143. Malaspina, A., Kaushik, N. & de Belleroche J. A 14-3-3 mRNA is up-regulated in amyotrophic lateral sclerosis spinal cord. J. Neurochem. 75, 2511–2520 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Wakabayashi, H. et al. Increased concentrations of 14-3-3 ε, γ and ζ isoforms in cerebrospinal fluid of AIDS patients with neuronal destruction. Clin. Chim. Acta. 312, 97–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Miller, R. F., Green, A. J., Giovannoni, G. & Thompson, E. J. Detection of 14-3-3 brain protein in cerebrospinal fluid of HIV infected patients. Sex Transm. Infect. 76, 408 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zerr, I. et al. Current clinical diagnosis in Creutzfeldt–Jakob disease: identification of uncommon variants. Ann. Neurol. 48, 323–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Rosenmann, H. et al. Detection of 14-3-3 protein in the CSF of genetic Creutzfeldt–Jakob disease. Neurology 49, 593–595 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Satoh, J., Kurohara, K., Yukitake, M. & Kuroda, Y. The 14-3-3 protein detectable in the cerebrospinal fluid of patients with prion-unrelated neurological diseases is expressed constitutively in neurons and glial cells in culture. Eur. Neurol. 41, 216–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Saiz, A., Marin, C., Tolosa, E. & Graus, F. Diagnostic usefulness of the determination of protein 14-3-3 in cerebrospinal fluid in Creutzfeldt–Jakob disease. Neurologia 13, 324–328 (1998).

    CAS  PubMed  Google Scholar 

  150. Will, R. G. et al. Cerbrospinal fluid test for new-variant Creutzfeldt–Jakob disease. Lancet 348, 955 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. Saiz, A. et al. Detection of 14-3-3 brain protein in the cerebrospinal fluid of patients with paraneoplastic neurological disorders. Ann. Neurol. 46, 774–777 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Hernandez Echebarria, L. E. et al. Detection of 14-3-3 protein in the CSF of a patient with Hashimoto's encephalopathy. Neurology 54, 1539–1540 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Irani, D. N. & Kerr, D. A. 14-3-3 protein in the cerebrospinal fluid of patients with acute transverse myelitis. Lancet 355, 901 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

    Article  CAS  PubMed  Google Scholar 

  156. Page, R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358 (1996).

    CAS  PubMed  Google Scholar 

  157. Perriere, G. & Gouy, M. WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–369 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Liddington for his helpful support and for providing figure 1. Our studies on 14-3-3 proteins have been supported by the Fortuene programme of the University of Tübingen and the FORUN programme of the University of Rostock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Berg.

Related links

Related links

DATABASES

LocusLink

14-3-3β

14-3-3γ

14-3-3ε

14-3-3η

14-3-3ζ

14-3-3σ

14-3-3τ/θ

Genbank

XP_086931

XP_170226

XP_016044

XP_070972

XP_005100

XP_018019

XP_062204

XP_018019

XP_066597

XP_066543

Glossary

DEAE-CELLULOSE CHROMATOGRAPHY

Type of ion-exchange chromatography in which the diethylaminoethyl group acts as a weak base, allowing the binding of negatively charged molecules.

STARCH-GEL ELECTROPHORESIS

Form of electrophoresis in which starch is used as solid matrix. It is particularly useful for the separation of the allelic variants of a protein.

NONSENSE MUTATION

A mutation that results in the introduction of a stop codon to cause the premature termination of the protein.

MISSENSE MUTATION

A mutation that results in the substitution of an amino acid in a protein.

ZINC FINGER

A protein module in which cysteine or cysteine–histidine residues coordinate a zinc ion. Zinc fingers are often used in DNA recognition and in protein–protein interactions.

OUTWARDLY-RECTIFYING K+ CHANNELS

Potassium channels through which ions flow more easily out of than into the cell. They are important for membrane repolarization after an action potential.

DYNAMIN

A GTPase that takes part in endocytosis. It seems to be involved in severing the connection between the nascent vesicle and the donor membrane.

LEAK CHANNELS

Proteins that are responsible for the background membrane currents that are present at rest and that rise instantly to a new steady level in response to voltage changes.

LISSENCEPHALY

Literally meaning 'smooth brain', lissencephaly is a human brain disorder that is characterized by absence or reduction of the cerebral convolutions.

RETT SYNDROME

An inherited, X-linked neurological disorder that is lethal to males. In females, the disorder is characterized by rapid neurological deterioration that leads to dementia, autism, loss of speech and voluntary movement, and microcephaly. Rett syndrome is related to mutations in Mecp2, which encodes a methyl-CpG binding protein that acts as a transcriptional repressor.

RASMUSSEN'S ENCEPHALITIS

A progressive neurological disorder characterized by frequent and severe seizures, loss of motor skills and speech, paralysis on one side of the body, inflammation of the brain, dementia and mental deterioration. The disorder, which affects a single cerebral hemisphere, generally occurs in children under the age of 10, and is related to the production of glutamate receptor autoantibodies.

SCHILDER'S DISEASE

Also known as diffuse sclerosis, Schilder's disease is a progressive demyelinating disorder that commonly begins in childhood. Its symptoms include dementia, aphasia, seizures, personality changes, loss of balance, weakness, and vision and speech impairment. This disorder is a variant of multiple sclerosis.

NEUROLEPTIC

This term was originally coined to refer to the effects of early antipsychotic agents on cognition and behaviour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, D., Holzmann, C. & Riess, O. 14-3-3 proteins in the nervous system. Nat Rev Neurosci 4, 752–762 (2003). https://doi.org/10.1038/nrn1197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing