Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Beyond phrenology, at last

Abstract

Although integration is a widely acknowledged goal in neuroscience, our approach to the function of biological entities often places boundaries that defy integration. Mapping across systems — from the genome to cognitive function — will require innovative methods that can identify every contributing component to a function, and instantaneously scale numerous changes in large data sets to consequences over the entire biological hierarchy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mohr, J. P. Some clinical aspects of acute stroke. Stroke 28, 1835–1839 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Reich, D. S., Mechler, F. & Victor, J. D. Independent and redundant information in nearby cortical neurons. Science 294, 2566–2568 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Poeppel, D. A critical review of PET studies of phonological processing. Brain Lang. 55, 317–351 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Fox, P. T. & Raichle, M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl Acad. Sci. USA 83, 1140–1144 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fox, P. T., Raichle, M. E., Mintun, M. A. & Dence, C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 241, 462–464 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Dhond, R. P., Buckner, R. L., Dale, A. M., Marinkovic, K. & Halgren, E. Spatiotemporal maps of brain activity underlying word generation and their modification during repetition priming. J. Neurosci. 21, 3564–3571 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Horwitz, B. & Poeppel, D. How can EEG/MEG and fMRI/PET data be combined? Hum. Brain Mapp. 17, 1–3 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Logothetis, N. K. & Sheinberg, D. L. Visual object recognition. Annu. Rev. Neurosci. 19, 577–621 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gauthier, I., Skudlarski, P., Gore, J. C. & Anderson, A. W. Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neurosci. 3, 191–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Dixon, M. J., Bub, D. N. & Arguin, M. Semantic and visual determinants of face recognition in a prosopagnosic patient. J. Cogn. Neurosci. 10, 362–376 (1998). | PubMed

    Article  CAS  PubMed  Google Scholar 

  15. Warrington, E. K. & Shallice, T. Category specific semantic impairments. Brain 107, 829–854 (1984).

    Article  PubMed  Google Scholar 

  16. Coslett, H. B., Saffran, E. M. & Schwoebel, J. Knowledge of the human body: a distinct semantic domain. Neurology 59, 357–363 (2002).

    Article  PubMed  Google Scholar 

  17. Cohen, L. G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Finney, E. M., Fine, I. & Dobkins, K. R. Visual stimuli activate auditory cortex in the deaf. Nature Neurosci. 4, 1171–1173 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Sur, M. & Leamey, C. A. Development and plasticity of cortical areas and networks. Nature Rev. Neurosci. 2, 251–262 (2001).

    Article  CAS  Google Scholar 

  20. Mellet, E., Petit, L., Mazoyer, B., Denis, M. & Tzourio, N. Reopening the mental imagery debate: lessons from functional anatomy. Neuroimage 8, 129–139 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Churchland, P. S. & Churchland, P. M. Neural worlds and real worlds. Nature Rev. Neurosci. 3, 903–907 (2002).

    Article  CAS  Google Scholar 

  22. Hoffman, E. A. & Haxby, J. V. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature Neurosci. 3, 80–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Roskies, A. L. The binding problem. Neuron 24, 7–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Rubenstein, J. L., Martinez, S., Shimamura, K. & Puelles, L. The embryonic vertebrate forebrain: the prosomeric model. Science 266, 578–580 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Bulfone, A. et al. An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons. Neuron 21, 1273–1282 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Held, L. I. Pattern as a function of cell number and cell size on the second-leg basitarsus of Drosophila. Wilhelm Roux's Arch. 187, 105–127 (1979).

    Article  Google Scholar 

  28. Eurich, C. W. & Schwegler, H. Coarse coding: calculation of the resolution achieved by a population of large receptive field neurons. Biol. Cybern. 76, 357–363 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Godfrey-Smith, P. On the theoretical role of 'genetic coding'. Philos. Sci. 67, 26–44 (2000).

    Article  Google Scholar 

  30. Tang, Y. P. et al. Genetic enhancement of learning and memory in mice. Nature 401, 63–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Grant, S. G. N. et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Futatsugi, A. et al. Facilitation of NMDAR-independent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3. Neuron 24, 701–713 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Mansuy, I. M., Mayford, M., Jacob, B., Kandel, E. R. & Bach, M. E. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92, 39–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Garcia, J. A. et al. Impaired cued and contextual memory in NPAS2-deficient mice. Science 288, 2226–2230 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Uetani, N. et al. Impaired learning with enhanced hippocampal long-term potentiation in PTPδ-deficient mice. EMBO J. 19, 2775–2785 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Madani, R. et al. Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 18, 3007–3012 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Katafuchi, T., Li, A. J., Hirota, S., Kitamura, Y. & Hori, T. Impairment of spatial learning and hippocampal synaptic potentiation in c-kit mutant rats. Learn. Mem. 7, 383–392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Motro, B., Wojtowicz, J. M., Bernstein, A. & van der Kooy, D. Steel mutant mice are deficient in hippocampal learning but not long-term potentiation. Proc. Natl Acad. Sci. USA 93, 1808–1813 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Donahue, C. P. et al. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation. Hippocampus 12, 821–833 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gass, P. et al. Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learn. Mem. 5, 274–288 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T. & Toth, M. Increased anxiety of mice lacking the serotonin 1A receptor. Proc. Natl Acad. Sci. USA 95, 10734–10739 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brown, J. R., Ye, H., Bronson, R. T., Dikkes, P. & Greenberg, M. E. A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86, 297–309 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F. & Monaco, A. P. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413, 519–523 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Blackshaw, S., Fraioli, R. E., Furukawa, T. & Cepko, C. L. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 107, 579–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Rosen, H. J., Lengenfelder, J. & Miller, B. Frontotemporal dementia. Neurol. Clin. 18, 979–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Bugiani, O. et al. Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J. Neuropathol. Exp. Neurol. 58, 667–677 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Toma, D. P., White, K. P., Hirsch, J. & Greenspan, R. J. Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nature Genet. 31, 349–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R. & Insel, T. R. Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400, 766–768 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Macagno, E. R., Lopresti, V. & Levinthal, C. Structure and development of neuronal connections in isogenic organisms: variations and similarities in the optic system of Daphnia magna. Proc. Natl Acad. Sci. USA 70, 57–61 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goodman, C. S. Isogenic grasshoppers: genetic variability in the morphology of identified neurons. J. Comp. Neurol. 182, 681–705 (1978).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank R. Jensen, R. Sperling and particularly A. Roskies for their critical reading of the manuscript and their help in shaping my ideas.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

arginine vasopressin

FosB

FOXP2

TAU

OMIM

Alzheimer disease

frontotemporal dementia

serotonin 1A receptor

FURTHER INFORMATION

Encyclopedia of Life Sciences

dyslexia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosik, K. Beyond phrenology, at last. Nat Rev Neurosci 4, 234–239 (2003). https://doi.org/10.1038/nrn1053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing