Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The future of anti-infective products in animal health

Abstract

The discovery, development and marketing of animal health anti-infective products are at an important crossroads. Traditional anti-infective products include antibiotics, parasiticides and vaccines, which are administered to either food production or companion animals. The convergence of market conditions, new regulatory guidance, political decisions and food safety concerns has led to a redirection of research away from traditional antibiotics and towards other products that have an increased probability of acceptance in the marketplace and shareholder return.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Phillips, R. Sales of animal health products show modest gain in 2002. (Animal Health Institute, Washington DC, USA) [online], (2002).

  2. Meinke, P. T. Perspectives in animal health: old targets and new opportunities. J. Med. Chem. 44, 641–659 (2001).

    Article  CAS  Google Scholar 

  3. Moore, A. S. & Kitchell, B. E. New chemotherapy agents in veterinary medicine. Vet. Clin. North Am. Small Anim. Pract. 33, 629–649 (2003).

    Article  Google Scholar 

  4. Evans, T. & Chapple, N. The animal health market. Nature Rev. Drug Discov. 1, 937–938 (2002).

    Article  CAS  Google Scholar 

  5. Agres, T. Doggy drug targets push research prospects. The Scientist 17, 52–53 (2003).

    Google Scholar 

  6. Phillips, I. et al. Does the use of antibiotics in food animals pose a risk to public health? A critical review of published data. J. Antimicrob. Chemother. 53, 28–52 (2004).

    Article  CAS  Google Scholar 

  7. McDonald's global policy on antibiotic use in food animals. [online], (2003).

  8. Proceedings of the Biannual meeting of the American Academy of Veterinary Pharmacology and Therapeutics [online], (2003).

  9. Fox, J. Gloomy forecast regarding efforts to develop new antibiotics. ASM News 69, 588–589 (American Society for Microbiology, Washington DC, 2003).

    Google Scholar 

  10. Nelson, R. Antibiotic development pipeline runs dry. Lancet 362, 1726–1727 (2003).

    Article  Google Scholar 

  11. Rochette, F., Engelen, M. & Vanden Bossche, H. Antifungal agents of use in animal health — practical applications. J. Vet. Pharmacol. Ther. 26, 31–53 (2003).

    Article  CAS  Google Scholar 

  12. Singh, M. & O'Hagan, D. T. Recent advances in veterinary vaccine adjuvants. Int. J. Parasitol. 33, 469–478 (2003).

    Article  CAS  Google Scholar 

  13. Lowenthal, J. W. et al. Avian cytokines — the natural approach to therapeutics. Dev. Comp. Immunol. 24, 355–365 (2000).

    Article  CAS  Google Scholar 

  14. Streatfield, S. J. & Howard, J. A. Plant-based vaccines. Int. J. Parasitol. 33, 479–493 (2003).

    Article  CAS  Google Scholar 

  15. Geary, T. G. and Thompson, D. P. Development of antiparasitic drugs in the 21st century. Vet. Parasitol. 115, 167–184 (2003).

    Article  CAS  Google Scholar 

  16. Harder, A. & von Samson-Himmelstjerna, G. Cyclooctadepsipeptides — a new class of anthelmintically active compounds. Parasitol. Res. 88, 481–488 (2002).

    Article  Google Scholar 

  17. Willadsen, P. The molecular revolution in the development of vaccines against ectoparasites. Vet. Parasitol. 101, 353–367 (2001).

    Article  CAS  Google Scholar 

  18. Dalton, J. P. & Mulcahy, G. Parasite vaccines — a reality? Vet. Parasitol. 98, 149–167 (2001).

    Article  CAS  Google Scholar 

  19. Allen, P. C. & Fetterer, R. H. Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clin. Microbiol. Rev. 15, 58–65 (2002).

    Article  CAS  Google Scholar 

  20. Bowles, V. M. et al. Vaccination of sheep against larvae of the sheep blowfly (Lucilia cuprina). Vaccine 14, 1347–1352 (1996).

    Article  CAS  Google Scholar 

  21. Meeusen, E. & Brandon, M. R. The use of antibody-secreting cell probes to reveal tissue-restricted immune responses during infection. Eur. J. Immunol. 24, 469–474 (1994).

    Article  CAS  Google Scholar 

  22. Knox, D. P., Redmond, D. L., Skuce, P. J. & Newlands, G. F. J. The contribution of molecular biology to the development of vaccines against nematode and trematode parasites of domestic ruminants. Vet. Parasitol. 101, 311–335 (2001).

    Article  CAS  Google Scholar 

  23. Knox, D. P. Development of vaccines against gastrointestinal nematodes. Parasitology 120, S43–S61 (2000).

    Article  Google Scholar 

  24. Meeusen, E. N. T. & Maddox, J. F. Progress and expectations for helminth vaccines. Adv. Vet. Med. 41, 241–256 (1999).

    Article  CAS  Google Scholar 

  25. Jacobs, H. J., Wiltshire, C., Ashman, K. & Meeusen, E. N. T. Vaccination against the gastrointestinal nematode, Haemonchus contortus, using a purified larval surface antigen. Vaccine 17, 362–368 (1999).

    Article  CAS  Google Scholar 

  26. Meeusen, E. Rational design of nematode vaccines, natural antigens. Int. J. Parasitol. 26, 813–818 (1996).

    Article  CAS  Google Scholar 

  27. Barling, K. S., Lunt, D. K., Graham, S. L. & Choromanski, L. J. Evaluation of an inactivated Neospora caninum vaccine in beef feedlot steers. J. Am. Vet. Med. Assoc. 222, 624–627 (2003).

    Article  Google Scholar 

  28. Zhang, G., Ross, C. R. & Blecha, F. Porcine antimicrobial peptides: new prospects for ancient molecules of host defense. Vet. Res. 31, 277–296 (2000).

    Article  CAS  Google Scholar 

  29. Joerger, R. D. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82, 640–647 (2003).

    Article  CAS  Google Scholar 

  30. Barrow, P. A. The use of bacteriophages for treatment and prevention of bacterial disease in animals and animal models of human infection. J. Chem. Technol. Biotechnol. 76, 677–682 (2001).

    Article  CAS  Google Scholar 

  31. Moldave, K. & Rhodes, L. Bacteriophage emerging as a tool in animal health and food safety. Animal Pharm 14–16 (Pharmaprojects, Richmond, UK, 18 July 2003).

  32. Page, S. W. The role of enteric antibiotics in livestock production. (National Association for Crop Production and Animal Health, Avcare, Australia, 2003), [online], (2003).

  33. Casewell, M., Friis, C., Marco, E., McMullin, P. & Phillips, I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother. 52, 159–161 (2003).

    Article  CAS  Google Scholar 

  34. Bedford, M. Removal of antibiotic growth promoters from poultry diets: implications and strategies to minimise subsequent problems. Worlds Poult. Sci. J. 56, 347–365 (2000).

    Article  Google Scholar 

  35. WHO. Impacts of antimicrobial growth promoter termination in Denmark. [online], (2003).

  36. Gaskins, H. R., Collier, C. T. & Anderson, D. B. Antibiotics as growth promotants: mode of action. Anim. Biotechnol. 13, 29–42 (2002).

    Article  CAS  Google Scholar 

  37. Verstegen, M. W. A. & Williams, B. A. Alternatives to the use of antibiotics as growth promoters for monogastric animals. Anim. Biotechnol. 13, 113–127 (2002).

    Article  CAS  Google Scholar 

  38. Howie, M. (ed.) Direct Fed Microbial Enzyme and Forage Additive Compendium (Miller Publishing Company, Minnetonka, Minnesota, USA, 2003).

    Google Scholar 

  39. Simon, O., Jadamus, A. & Vahjen, W. Probiotic feed additives — effectiveness and expected modes of action. J. Anim. Feed Sci. 10, 51–67 (2001).

    Article  Google Scholar 

  40. Reid, G. & Friendship, R. Alternatives to antibiotic use: probiotics for the gut. Anim. Biotechnol. 13, 97–112 (2002).

    Article  Google Scholar 

  41. Mosenthin, R. & Bauer, E. The potential use of prebiotics in pig nutrition. Asian–australas. J. Anim. Sci. 13, 315–325 (2000).

    Google Scholar 

  42. Hatten, L. F., Ingram, D. R. & Pittman, S. T. Effect of phytase on production parameters and nutrient availability in broilers and laying hens: a review. J. Appl. Poult. Res. 10, 274–278 (2001).

    Article  CAS  Google Scholar 

  43. Rosen, G. D. Pronutrient antibiotic replacement standards discussed. Feedstuff 75, 11 (2003).

    Google Scholar 

  44. Merck Veterinary Manual. (Aiello, S. E., ed.). 8th ed. (Merck and Co., Whitehouse Station, New Jersey), [online], (1998).

Download references

Acknowledgements

The excellent contributions of J. Wehlacz, information scientist, for extensive literature searches, D. E. Snyder for critical inputs on the parasitology section and B. Reed for manuscript preparation are gratefully acknowledged. Appreciation is extended to Wood Mackenzie for assistance on financial aspects using the Veterinary Portofolio Analysis Tool and for providing product approval information.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author is employed by, and owns shares in, Eli Lilly & Co.

Related links

Related links

FURTHER INFORMATION

2003 Discover conference

American Academy of Veterinary Pharmacology and Therapeutics

EMEA CVMP

International Federation for Animal Health

OIE/FAO/WHO Joint consultation on non-human use of antimicrobial usage and antimicrobial resistance

OIE Antimicrobial Resistance report

US Animal Health Institute

US Food and Drug Administration Center for Veterinary Medicine

US Public Health Action Plan 2001

WHO Global Principles Consultation report

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shryock, T. The future of anti-infective products in animal health. Nat Rev Microbiol 2, 425–430 (2004). https://doi.org/10.1038/nrmicro887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing