Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of HIV-1 infection by soluble factors of the immune response

Key Points

  • Immune responses against viral infections can be supplemented by soluble factors that suppress viral replication without killing infected cells. This non-cytolytic effector mechanism contrasts with the viral clearance mediated by cytotoxic T lymphocytes (CTLs), which involves the targeted destruction of cells that harbour replicating viruses.

  • Many soluble suppressor factors have immunomodulatory as well as antiviral functions. In some cases, these different functions involve the same receptor-mediated pathways.

  • HIV-1 infection is a model case in which soluble non-cytolytic suppressor activity might have an important role in antiviral immunity.

  • Soluble and non-cytolytic HIV suppressor activity was originally identified in cultures of activated CD8+ T cells and was called CD8 antiviral factor (CAF). However, it is now known that soluble HIV-1 suppressor activity is produced by several cell types and is mediated by combinations of diverse factors.

  • Studies of HIV-1 infection show that the composition of soluble virus suppressor activities can vary according to the producer cell type and the mode of cellular activation. Furthermore, the arrays of factors that comprise the activity may change over time.

  • Only a few HIV suppressor factors have been identified. These factors target a range of viral replication steps. In many cases, the chemokines RANTES, MIP-1α and MIP-1β are responsible for suppressing R5 strains of HIV-1. Interferons, eosinophil-derived neutrophils and macrophage-derived chemokines also contribute to the bulk suppressor activity in certain systems. The element of CAF that suppresses HIV-1 gene transcription remains unidentified.

  • Clinical studies have correlated the natural ability to produce high concentrations of soluble suppressor factors with the control or prevention of HIV-1 infection. Other studies indicate that secondary infections by other microorganisms might suppress HIV-1 infection by stimulating the release of soluble suppressor factors. Collectively, these studies indicate that soluble non-cytolytic suppressor factors might provide a valuable basis for developing new ways to treat or prevent viral infections.

Abstract

An increasing body of evidence indicates that the immune system uses a range of soluble molecules to suppress certain viral infections without killing infected host cells. Recent studies indicate that such factors might have an especially important role in the immune response to HIV-1. Accordingly, this review uses HIV-1 as a model to explore the diversity of non-cytolytic antiviral factors and considers how these molecules might be used to develop new therapeutic and prophylactic strategies to fight viral infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A working model of an antiviral immune response that uses cytolytic cell killing, antibodies and soluble non-cytolytic factors as a means to suppress infection.
Figure 2: RANTES, MIP-1α and MIP-1β are primarily responsible for the suppression of macrophage-tropic (R5) HIV-1 replication by CD8+ T-cell-culture supernatants.
Figure 3: A schematic representation of the multipartite nature of the soluble HIV-1 suppressor activity produced by CD8+ T cells.
Figure 4: A variety of primary cell subsets secrete soluble HIV-1 suppressor activities in response to various stimuli.
Figure 5: Soluble factors might suppress HIV-1 at multiple replication steps through several mechanisms.

Similar content being viewed by others

References

  1. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    CAS  PubMed  Google Scholar 

  2. Biron, C. A. & Brossay, L. NK cells and NKT cells in innate defence against viral infections. Curr. Opin. Immunol. 13, 458–464 (2001).

    CAS  PubMed  Google Scholar 

  3. Wallace, M., Malkovsky, M. & Carding, S. R. γ/δ T lymphocytes in viral infections. J. Leukoc. Biol. 58, 277–283 (1995).

    CAS  PubMed  Google Scholar 

  4. Welsh, R. M. et al. α β and γ δ T-cell networks and their roles in natural resistance to viral infections. Immunol. Rev. 159, 79–93 (1997).

    CAS  PubMed  Google Scholar 

  5. Selin, L. K., Santolucito, P. A., Pinto, A. K., Szomolanyi-Tsuda, E. & Welsh, R. M. Innate immunity to viruses: control of vaccinia virus infection by γ δ T cells. J. Immunol. 166, 6784–6794 (2001).

    CAS  PubMed  Google Scholar 

  6. Isaacs, A. & Lindemann, J. Virus interference I. The interferon. Proc. Natl Acad. Sci. USA 147, 258 (1957).

    CAS  Google Scholar 

  7. Vilcek, J. & Sen, G. C. in Virology (eds Fields B. N., Knipe, D. M. & Howley, P. M.) 375 (Lippencott–Raven, Philadelphia, 1996).

    Google Scholar 

  8. Kalvakolanu, D. V. & Borden, E. C. An overview of the interferon system: signal transduction and mechanism of action. Cancer Invest. 14, 25–53 (1996).

    CAS  PubMed  Google Scholar 

  9. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem. 67. 227–264 (1998).

    CAS  PubMed  Google Scholar 

  10. Guidotti, L. G. & Chisari, F. V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19, 65–91 (2001). Excellent review of the role of soluble virus suppressor factors in HBV and other viral infections.

    CAS  PubMed  Google Scholar 

  11. Katze, M. G., He, Y. & Gale, M. Viruses and interferon: a fight for supremacy. Nature Rev. Immunol. 2, 675–687 (2002).

    CAS  Google Scholar 

  12. Shirazi, Y. & Pitha, P. M. Intereferon α-mediated inhibition of human immunodeficiency virus type 1 provirus synthesis in T-cells. Virology 193, 303–312 (1993).

    CAS  PubMed  Google Scholar 

  13. Shirazi, Y. & Pitha, P. M. Interferon downregulates CXCR4 (fusin) gene expression in peripheral blood mononuclear cells. J. Human. Virol. 2, 69–76 (1998).

    Google Scholar 

  14. Guidotti, L. G, Guilhot, S. & Chisari, F. V. Interleukin 2 and interferon α/β negatively regulates hepatitis B virus gene expression in vivo by tumor necrosis factor dependent and independent pathways. J. Virol. 68, 1265–1270 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilles, P. N., Fey, G. & Chisari, F. V. Tumor necrosis factor-α negatively regulates hepatitis B virus gene expression in transgenic mice. J. Virol. 66, 3955–3960 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Herbein, G. & O'Brien, W. A. Tumor necrosis factor (TNF)-α and TNF receptors in viral pathogenesis Proc. Soc. Exp. Biol. Med. 223, 241–257 (2000).

    CAS  PubMed  Google Scholar 

  17. Chang, T. L.-Y., Mosoian, A., Pine, R., Klotman, M. E. & Moore, J. P. A soluble factor(s) secreted from CD8+ T lymphocytes inhibits human immunodeficiency virus type 1 replication through STAT1 activation. J. Virol. 76, 569–581 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Patterson, J. B., Thomis, D. C., Hans, S. L. & Samuel, C. E. Mechanism of interferon action: double stranded RNA-specific adenosine deaminase from human cells is inducible by α and γ interferons. Virology 210, 508–511 (1995).

    CAS  PubMed  Google Scholar 

  19. Bovolenta, C. et al. A selective defect of IFN-γ- but not of IFN-α-induced JAK/STAT pathway in a subset of U937 clones prevents the antiretroviral effect of IFN-γ against HIV-1. J. Immunol. 162, 323–330 (1999).

    CAS  PubMed  Google Scholar 

  20. Guidotti, L. G. et al. Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc. Natl Acad. Sci. USA 91, 3764–3768 (1994).

    CAS  PubMed  Google Scholar 

  21. Guidotti, L. G. et al. Intracellular inactivation of the hepatitis B by cytotoxic T lymphocytes. Immunity 4, 25–36 (1996).

    CAS  PubMed  Google Scholar 

  22. Guidotti, L. G. The role of cytotoxic T cells and cytokines in the control of hepatitis B virus infection. Vaccine 4, 80–82 (2002).

    Google Scholar 

  23. Nakamoto, Y., Guidotti, L. G., Pasquetto, V., Schreiber, R. D. & Chisari, F. V. Differential target cell sensitivity to cytotoxic T lymphocyte-activated death pathways in vivo. J. Immunol. 158, 5692–5697 (1997).

    CAS  PubMed  Google Scholar 

  24. Binder, D. & Kundig, T. Antiviral protection by CD8+ versus CD4+ T cells: CD8+ T cells correlating with cytotoxic activity in vitro are more effective in antivaccinia virus protection than CD4-dependent interleukins. J. Immunol. 146, 4301–4307 (1991).

    CAS  PubMed  Google Scholar 

  25. Eichelberger, M., Allan, W., Zijlstra, M., Jaenisch, R. & Doherty, P. C. Clearance of influenza virus respiratory infection in mice lacking Class I major histocompatibility complex-restricted CD8+ T cells. J. Exp. Med. 174, 875–880 (1991).

    CAS  PubMed  Google Scholar 

  26. Kundig, T. M., Hengartner, H. & Zinkernagel, R. M. T-cell dependent interferon γ exerts an antiviral effect in central nervous system but not in peripheral solid organs. J. Immunol. 150, 2316–2321 (1992).

    Google Scholar 

  27. Scherle, P. A., Palladino, G. & Gerhard, W. Mice can recover from pulmonary influenza virus infection in the absence of class I-restricted cytotoxic T cells. J. Immunol. 148, 212–217 (1992).

    CAS  PubMed  Google Scholar 

  28. Spriggs, M. K. et al. β2-microglobulin-, CD8+ T-cell-deficient mice survive inoculation with hogh doses of vaccinia virus and exhibit altered IgG responses Proc. Natl Acad. Sci. USA 89, 6070–6074 (1992).

    CAS  PubMed  Google Scholar 

  29. Franco, A., Guidotti, L. G., Hobbs, M. V., Pasquetto, V. & Chisari, F. V. Pathogenic effector function of CD4+ T-helper-1 cells in hepatitis B virus transgenic mice. J. Immunol. 159, 2001–2008 (1997).

    CAS  PubMed  Google Scholar 

  30. Maloy, K. J. et al. CD4+ T-cell subsets during virus infection. Protective capacity depends on effector cytokine secretion and on migratory capability. J. Exp. Med. 191, 2159–2170 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Abdelwahab, S. F. et al. HIV-1-suppressive factors are secreted by CD4+ T cells during primary immune responses. Proc. Natl Acad. Sci. USA 100, 15006–15010 (2003).

    CAS  PubMed  Google Scholar 

  32. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    CAS  PubMed  Google Scholar 

  33. Orange, J. S., Wang, B., Terhorst, C. & Biron, C. A. Requirement for natural killer cell-produced interferon γ in defense against murine cytomegalovirus infection and enhancement in defense pathway by interleukin 12 administration. J. Exp. Med. 182, 1045–1056 (1995).

    CAS  PubMed  Google Scholar 

  34. Orange, J. S. & Biron, C. A. Characterization of early IL-12, IFN-α/β, and TNF effects on antiviral state and NK responses during murine cytomegalovirus infection. J. Immunol. 156, 4746–4756 (1996).

    CAS  PubMed  Google Scholar 

  35. Fehniger, T. A. et al. Natural killer cells from HIV-1+ patients produce C-C chemokines and inhibit HIV-1 infection. J. Immunol. 161, 6433–6438 (1998).

    CAS  PubMed  Google Scholar 

  36. Oliva, A. et al. Natural killer cells from human immunodeficiency virus (HIV)-infected individuals are an important source of CC-chemokines and suppress HIV-1 entry and replication in vitro. J. Clin. Invest. 102, 223–231 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kottilil, S. et al. Innate immunity in human immunodeficiency virus infection: effect of viremia on natural killer cell function. J. Infect. Dis. 187, 1038–1045 (2003).

    PubMed  Google Scholar 

  38. Lehner, T. et al. The role of γ/δ T cells in generating antiviral factors and β-chemokines in protection against mucosal simian immunodeficiency virus infection. Eur. J. Immunol. 30, 2245–2256 (2000).

    CAS  PubMed  Google Scholar 

  39. Lukacher, A. E., Braciale, V. L. & Braciale, T. J. In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific. J. Exp. Med. 160, 814–825 (1984).

    CAS  PubMed  Google Scholar 

  40. McIntyre, K. W., Bukowski, J. F. & Welsh, R. M. Exquisite specificity of adoptive immunization in arenavirus-infected mice. Antiviral Res. 5, 299–305 (1985).

    CAS  PubMed  Google Scholar 

  41. Guidotti, L. G. et al. Viral cross talk: intracellular inactivation of the hepatitis B virus during an unrelated infection of the liver. Proc. Natl Acad. Sci. USA 93, 4589–4594 (1996).

    CAS  PubMed  Google Scholar 

  42. Tassopoulos, N. et al. Double infections with hepatitis A and B viruses. Liver 5, 348–353 (1985).

    CAS  PubMed  Google Scholar 

  43. Van Nunen, A. B., Pontesilli, O., Uytdehaag, F., Osterhaus, A. D. & de Man, R. A. Suppression of hepatitis B virus replication mediated by hepatitis A-induced cytokine production. Liver 21, 45–49. (2001).

    CAS  PubMed  Google Scholar 

  44. Walker, C. M., Moody, D. J., Stites, D. P. & Levy, J. A. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234, 1563–1566 (1986). Provides the first description of soluble HIV suppressor activity released by CD8+ T cells. This activity was later called CAF.

    CAS  PubMed  Google Scholar 

  45. Mackewicz, C. E. & Levy, J. A. CD8+ cell anti-HIV activity: noncytolytic suppression of virus replication. AIDS Res. Hum. Retrovir. 8, 1039–1050 (1992).

    CAS  PubMed  Google Scholar 

  46. Levy, J. A., Mackewicz, C. E. & Barker, E. Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunol. Today 17, 217–224 (1996).

    CAS  PubMed  Google Scholar 

  47. Barker, T. D., Weissman, D., Daucher, J. A., Roche, K. M. & Fauci, A. S. Identification of multiple and distinct CD8+ T cell suppressor activities: dichotomy between infected and uninfected individuals, evolution with progression of disease, and sensitivity to γ irradiation. J. Immunol. 156, 4476–4483 (1996)

    CAS  PubMed  Google Scholar 

  48. Wiviott, L. D., Walker, C. M. & Levy, J. A. CD8+ lymphocytes suppress HIV production by autologous CD4+ cells without eliminating the infected cells from culture. Cell. Immunol. 128, 628–634 (1990).

    CAS  PubMed  Google Scholar 

  49. Walker, C. M., Erickson, A. L., Hsueh, F. C. & Levy, J. A. Inhibition of human immunodeficiency virus replication in acutely infected CD4+ cells by CD8+ cells involves a noncytotoxic mechanism. J. Virol. 65, 5921–5927 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Walker, C. M. & Levy, J. A. A diffusible lymphokine produced by CD8+ T lymphocytes suppresses HIV replication. Immunology 66, 628–630 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Brinchmann, J. E., Gaudernack, G. & Vartdal, F. CD8+ T cells inhibit HIV replication in naturally infected CD4+ T cells. J. Immunol. 144, 2961–2966 (1990).

    CAS  PubMed  Google Scholar 

  52. Mackewicz, C. E., Ortega, H. W. & Levy, J. A. Effect of cytokines on HIV replication in CD4+ lymphocytes: lack of identity with the CD8+ cell antiviral factor. Cell. Immunol. 153, 329–343 (1994). Provides evidence that the antiviral effect of CAF was not entirely due to any of the non-cytolytic antiviral cytokines known at the time.

    CAS  PubMed  Google Scholar 

  53. Cocchi, F. et al. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815 (1995). The first report to identify a new HIV suppressor factor and reveal that certain chemokines are components of CAF. The paper also showed that soluble suppressor activities are composed of multiple components.

    CAS  PubMed  Google Scholar 

  54. Alkhatib, G. et al. CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958 (1996).

    CAS  PubMed  Google Scholar 

  55. Dragic, T. et al. HIV-1 entry into CD4 1 cells is mediated by the chemokine receptor CC-CKR–5. Nature 381, 667–673 (1996).

    CAS  PubMed  Google Scholar 

  56. Choe, H. et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148 (1996).

    CAS  PubMed  Google Scholar 

  57. Deng, H. K. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666 (1996).

    CAS  PubMed  Google Scholar 

  58. Berger, E. A., Murphy, P. M. & Farber, J. M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. . Annu. Rev. Immunol. 17, 657–700 (1999).

    CAS  PubMed  Google Scholar 

  59. Gong, W. et al. Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication. J. Biol. Chem. 273, 4289–4292 (1998).

    CAS  PubMed  Google Scholar 

  60. Bertini, R. et al. Identification of MIP-1α/LD78 as a monocyte chemoattractant released by the HTLV-I-transformed cell line MT4. AIDS Res Hum Retrovir. 11, 155–160 (1995).

    CAS  PubMed  Google Scholar 

  61. Detheux, M. et al. Natural proteolytic processing of hemofiltrate CC chemokine 1 generates a potent CC chemokine receptor (CCR)1 and CCR5 agonist with anti-HIV properties. J. Exp. Med. 192, 1501–1508 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G-protein coupled receptor. Science 272, 872–877 (1996). This seminal paper demonstrates that certain chemokine receptors act as entry co-receptors for HIV-1.

    CAS  PubMed  Google Scholar 

  63. Bleul, C. C. et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829–833 (1996).

    CAS  PubMed  Google Scholar 

  64. Mackewicz, C. E., Craik, C. S. & Levy, J. A. The CD8+ cell noncytotoxic anti-HIV response can be blocked by protease inhibitors. Proc. Natl Acad. Sci. USA 100, 3433–3438 (2003).

    CAS  PubMed  Google Scholar 

  65. Mackewicz, C. E. et al. Lack of the CD8+ cell anti-HIV factor in CD8+ cell granules. Blood 102, 180–183 (2003).

    CAS  PubMed  Google Scholar 

  66. Mengozzi, M. et al. Naive CD4 T cells inhibit CD28-costimulated R5 HIV replication in memory CD4 T cells. Proc. Natl Acad. Sci. USA 98, 11644–11649 (2001).

    CAS  PubMed  Google Scholar 

  67. Levine, B. L. et al. Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation. Science 272, 1939–1943 (1996).

    CAS  PubMed  Google Scholar 

  68. Riley, J. L. et al. Intrinsic resistance to T cell infection with HIV type 1 induced by CD28 costimulation. J. Immunol. 158, 5545–5553 (1997).

    CAS  PubMed  Google Scholar 

  69. Poccia, F. et al. Phospohoantigen-reactive Vγ9δ2 T lymphocytes suppress in vitro human immunodeficiency virus type 1 replication by cell-released antiviral factors including CC chemokines. J. Infect. Dis. 180, 858–861 (1999).

    CAS  PubMed  Google Scholar 

  70. Furci, L. et al. Antigen-driven C-C chemokine-mediated HIV-1 suppression by CD4+ T cells from exposed uninfected individuals expressing wild-type CCR-5 allele. J. Exp. Med. 186, 455–460 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pinto, L. A. et al. Inhibition of human immunodeficiency virus type 1 replication prior to reverse transcription by influenza virus stimulation. J. Virol. 74, 4505–4511 (2000). Identifies IFN as an important component of the soluble HIV-1 suppressor factor that is released following influenza virus stimulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Pinto, L. A., Sharpe, S., Cohen, D. I. & Shearer, G. M. Alloantigen-stimulated anti-HIV activity. Blood 92, 3346–3354 (1998).

    CAS  PubMed  Google Scholar 

  73. Roso, J. F. et al. Oligoclonal CD8 lymphocytes from persons with asymptomatic human immunodeficiency virus (HIV) type 1 infection inhibit HIV-1 replication. J. Infect. Dis. 172, 964–973 (1995).

    Google Scholar 

  74. Yang, O. O. et al. Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J. Virol. 71, 3120–3128 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wagner, L. et al. β-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 391, 908–911 (1998).

    CAS  PubMed  Google Scholar 

  76. Price, D. A. et al. Antigen-specific release of β-chemokines by anti-HIV-1 cytotoxic T lymphocytes. Curr. Biol. 8, 355–358 (1998).

    CAS  PubMed  Google Scholar 

  77. Van Baalen, C. A. et al. Kinetics of antiviral activity by human immunodeficiency virus type 1-specific cytotoxic T lymphocytes (CTL) and rapid selection of CTL escape virus in vitro. J. Virol. 72, 6851–6857 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Le Borgne, S., Fevrier, M., Callebaut, C., Lee, S. P. & Riviere, Y. CD8-cell antiviral factor activity is not restricted to human immunodeficiency virus (HIV)-specific T cells and can block HIV replication after initiation of reverse transcription. J. Virol. 74, 4456–4464 (2000). Demonstrates that CTLs against non-HIV antigens also release active concentrations of non-cytolytic HIV-1 suppressor factors.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Burns, J. M., Lewis, G. K. & DeVico, A. L. Soluble complexes of regulated upon activation, normal T cells expressed and secreted (RANTES) and glycosaminoglycans suppress HIV-1 infection but do not induce Ca2+ signaling. Proc. Natl Acad. Sci. USA 96, 14499–14504 (1999).

    CAS  PubMed  Google Scholar 

  80. Sharma, U. K. et al. A novel factor produced by placental cells with activity against HIV-1. J. Immunol. 161, 6404–6412 (1998).

    Google Scholar 

  81. Patterson, B. K. et al. Leukemia inhibitory factor inhibits HIV-1 replication and is upregulated in placentae from nontransmitting women. J. Clin. Invest. 107, 287–294 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pal, R. et al. Inhibition of HIV-1 infection by the β-chemokine MDC. Science 278, 695–698 (1997).

    CAS  PubMed  Google Scholar 

  83. Struyf, S. et al. Enhanced anti-HIV-1 activity and altered chemotactic potency of NH2-terminally processed macrophage-derived chemokine (MDC) imply an additional MDC receptor. J. Immunol. 161, 2672–2675 (1998).

    CAS  PubMed  Google Scholar 

  84. Cota, M. et al. Selective inhibition of HIV replication in primary macrophages but not T lymphocytes by macrophage-derived chemokine. Proc. Natl Acad. Sci. USA 97, 9162–9167 (2000).

    CAS  PubMed  Google Scholar 

  85. Agrawal, L., Vanhorn-Ali, Z. & Alkhatib, G. Multiple determinants are involved in HIV coreceptor use as demonstrated by CCR4/CCL22 interaction in peripheral blood mononuclear cells (PBMCs). J. Leukoc. Biol. 72, 1063–1074 (2002).

    CAS  PubMed  Google Scholar 

  86. Moriuchi, H. & Moriuchi, M. Dichotomous effects of macrophage-derived chemokine on HIV infection. AIDS 28, 994–996 (1999).

    Google Scholar 

  87. Brinchmann, J. E., Gaudernack, G. & Vartdal, F. In vitro replication of HIV-1 in naturally infected CD4+ T cells is inhibited by rIFN α2 and by a soluble factor secreted by activated CD8+ T cells, but not by rIFNβ, rIFNγ, or recombinant tumor necrosis factor-α. J. Acquir. Immune Defic. Syndr. 4, 480–488 (1991).

    CAS  PubMed  Google Scholar 

  88. Yamamoto, J. K., Barre-Sinoussi, F., Bolton, V., Pedersen, N. C. & Gardner, M. B. Human α- and β-interferon but not γ- suppress the in vitro replication of LAV, HTLV-III, and ARV-2. J. Interferon Res. 6, 143–152 (1986).

    CAS  PubMed  Google Scholar 

  89. Hammer, S. M., Gillis, J. M., Groopman, J. E. & Rose, R. M. In vitro modification of human immunodeficiency virus infection by granulocyte-macrophage colony-stimulating factor and γ interferon. Proc. Natl Acad. Sci. USA 83, 8734–8738 (1986).

    CAS  PubMed  Google Scholar 

  90. Nakashima, H., Yoshida, T., Harada, S & Yamamoto, H. Recombinant human interferon γ suppresses HTLV-III replication in vitro. Int. J. Cancer 38, 433–436 (1986).

    CAS  PubMed  Google Scholar 

  91. Poli, G., Orenstein, J. M., Kinter, A., Folks, T. M. & Fauci, A. S. Interferon-α but not AZT suppresses HIV expression in chronically infected cell lines. Science 244, 575–577 (1989).

    CAS  PubMed  Google Scholar 

  92. Wong, G. H., Krwoka, J. F., Stites, D. P. & Goeddel, D. V. In vitro anti-human immunodeficiency virus activities of tumor necrosis factor-α and interferon-γ. J. Immunol. 40, 120–124 (1988).

    Google Scholar 

  93. Williams, G. J. & Colby, C. B. Recombinant human interferon-β suppresses the replication of HIV and acts synergistically with AZT. J. Interferon Res. 9, 709–718 (1989).

    CAS  PubMed  Google Scholar 

  94. Gendelman, H. E. et al. Regulation of HIV replication in infected monocytes by IFN-α. Mechanisms for viral restriction. J. Immunol. 145, 2669–2676 (1990).

    CAS  PubMed  Google Scholar 

  95. Hartshorn, K. L., Neumeyer, D., Vogt, M. W., Schooley, R. T. & Hirsch, M. S. Activity of interferons α, β, and γ against human immunodeficiency virus replication in vitro. AIDS Res. Hum. Retrovir. 3, 125–133 (1987).

    CAS  PubMed  Google Scholar 

  96. Kornbluth, R. S., Oh, P. S., Munis, J. R., Cleveland, P. H. & Richman, D. D. The role of interferons in the control of HIV replication in macrophages. Clin. Immunol. Immunopathol. 54, 200–219 (1990).

    CAS  PubMed  Google Scholar 

  97. Moriuchi, H., Moriuchi, M., Combadiere, C., Murphy, P. M. & Fauci, A. S. CD8+ T-cell-derived soluble factor(s), but not β-chemokines RANTES, MIP-1α, and MIP-1β, suppress HIV-1 replication in monocyte/macrophages. Proc. Natl Acad. Sci. USA. 93, 15341–15345 (1996).

    CAS  PubMed  Google Scholar 

  98. Saha, K., Bentsman, G., Chess, L. & Volsky, D. J. Endogenous production of β-chemokines by CD4+, but not CD8+, T-cell clones correlates with the clinical state of human immunodeficiency virus type 1 (HIV-1)-infected individuals and may be responsible for blocking infection with non-syncytium-inducing HIV-1 in vitro. J. Virol. 72, 876–881 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Leith, J. G. et al. T cell-derived suppressive activity: evidence of autocrine noncytolytic control of HIV type 1 transcription and replication. AIDS Res. Hum. Retrovir. 15, 1553–1561 (1999).

    CAS  PubMed  Google Scholar 

  100. Mosoian, A., Teixeira, A., Caron, E., Piwoz, J. & Klotman, M. E. CD8 cell lines isolated from HIV-1-infected children have potent soluble HIV-1 inhibitory activity that differs from β-chemokines. Viral Immunol. 13, 481–495 (2000).

    CAS  PubMed  Google Scholar 

  101. Geiben-Lynn, R., Brown, N., Walker, B. D. & Luster, A. D. Purification of a modified form of bovine antithrombin III as an HIV-1 CD8+ T-cell antiviral factor. J. Biol. Chem. 277, 42352–42357 (2002). Demonstrates that components of commercial media or serum additives (perhaps generated by cellular proteases) might contribute to soluble HIV-suppressor activities.

    CAS  PubMed  Google Scholar 

  102. Zhang, L. et al. Contribution of human defensin 1, 2,and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298, 995–1000 (2002).

    CAS  PubMed  Google Scholar 

  103. Baier, M., Werner, A., Bannert, N., Metzner, K. & Kurth, R. HIV suppression by interleukin-16. Nature 378, 563 (1995).

    CAS  PubMed  Google Scholar 

  104. Rugeles, M. T. et al. Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS 17, 481–486 (2003). Identifies EDN ribonuclease as an important soluble HIV-1 suppressor factor that is released by alloantigen-stimulated cells.

    CAS  PubMed  Google Scholar 

  105. Lacey, S., McDanal, C. B., Horuk, R. & Greenberg, M. L. The CXC chemokine stromal cell derived factor 1 is not responsible for CD8+ T cell suppression of syncytia-indicing strains of HIV-1. Proc. Natl Acad. Sci. USA 94, 9842–9847 (1997).

    CAS  PubMed  Google Scholar 

  106. Cruikshank, W. W., Kornfeld, H. & Center, D. M. Interleukin-16. J. Leukoc Biol. 67, 757–766 (2000).

    CAS  PubMed  Google Scholar 

  107. Mackewicz, C. E., Levy, J. A., Cruikshank, W. W., Kornfeld, H. & Center, D. M. Role of IL-16 in HIV replication. Nature 383, 488–489 (1995).

    Google Scholar 

  108. Maciaszek, J. W. et al. IL-16 represses HIV-1 promoter activity. J. Immunol. 158, 5–8 (1997).

    CAS  PubMed  Google Scholar 

  109. Truong, M. et al. Interleukin-16 inhibits human immunodeficiency virus type 1 entry and replication in macrophages and dendritic cells. J. Virol. 73, 7008–7013 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wada, M. et al. Amino-terminal fragment of urokinase-type plasminogen activator inhibits HIV-1 replication. Biochem. Biophys. Res. Commun. 284, 346–351 (2001).

    CAS  PubMed  Google Scholar 

  111. Alfano, M., Sidenius, N., Panzeri, B., Blasi, F. & Poli, G. Urokinase-urokinase receptor interaction mediates an inhibitory signal for HIV-1 replication. Proc. Natl Acad. Sci. USA 99, 8862–8867 (2002).

    CAS  Google Scholar 

  112. Sinha, S., Cheshenko, N., Lehrer, R. I. & Herold, B. C. NP-1, a rabbit α-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob. Agents Chemother. 47, 494–500 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Daher, K. A., Selsted, M. E. & Lehrer, R. I. Direct inactivation of viruses by human granulocyte defensins. J. Virol. 60, 1068–1074 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bastian, A. & Schafer, H. Human α-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul. Pept. 101, 157–161 (2001).

    CAS  PubMed  Google Scholar 

  115. Nakashima, H., Yamamoto, N., Masuda, M. & Fujii, N. Defensins inhibit HIV replication in vitro. AIDS 7, 1129 (1993).

    CAS  PubMed  Google Scholar 

  116. Chang, T. L., Francois, F., Mosoian, A. & Klotman, M. E. CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from α-defensin-1 HIV inhibition. J. Virol. 77, 6777–6784 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mackewicz, C. E. et al. Lack of the CD8+ cell anti-HIV factor in CD8+ cell granules. Blood 102, 180–183 (2003).

    CAS  PubMed  Google Scholar 

  118. Borregaard, N. & Cowland, J. B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 10, 3503–3521 (1997).

    Google Scholar 

  119. Mackewicz, C. E. et al. α-defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 17, 23–32 (2003).

    Google Scholar 

  120. Zhang, L., Lopez, P., He, T., Yu, W. & Ho, D. D. Retraction of an interpretation. Science 303, 467 (2004).

    CAS  PubMed  Google Scholar 

  121. Mackewicz, C. E., Craik, C. S. & Levy, J. A. The CD8+ cell noncytotoxic anti-HIV response can be blocked by protease inhibitors. Proc. Natl Acad. Sci. USA 100, 3433–3438 (2003).

    CAS  PubMed  Google Scholar 

  122. Pinto, L. A., Blazevic, V., Shearer, G. M., Patterson, B. K. & Dolan, M. J. Alloantigen-induced anti-HIV activity occurs prior to reverse transcription and can be generated by leukocytes from HIV-infected individuals. Blood 95, 1875–1876 (2000).

    CAS  PubMed  Google Scholar 

  123. Fernie, B. F., Poli, G. & Fauci, A. S. α-interferon suppresses virion but not soluble human immunodeficiency virus antigen production in chronically infected T-lymphocytic cells. J. Virol. 65, 3968–3971 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou, P., Goldstein, S., Devadas, K., Tewari, D. & Notkins, A. Human CD4+ cells transfected with IL-16 cDNA are resistant to HIV-1 infection: inhibition of mRNA expression. Nature Med. 3, 659–664 (1997).

    CAS  PubMed  Google Scholar 

  125. Chen, C. H., Weinhold, K. J., Bartlett, J. A., Bolognesi, D. P. & Greenberg, M. L. CD8 T lymphocyte-mediated inhibition of HIV-1 long terminal repeat transcription: a novel antiviral mechanism. AIDS Res. Hum. Retrovir. 9, 1079–1086 (1993). Shows that 'CAF' contains an unknown factor that inhibits HIV-1 transcription.

    CAS  PubMed  Google Scholar 

  126. Mackewicz, C. E., Blackbourn, D. J. & Levy, J. A. CD8 T cells suppress human immunodeficiency virus replication by inhibiting viral transcription. Proc. Natl Acad. Sci. USA 92, 2308–2312 (1995).

    CAS  PubMed  Google Scholar 

  127. Copeland, K. F., McKay, P. J. & Rosenthal, K. L. Suppression of activation of the human immunodeficiency virus long terminal repeat by CD8 T cells is not lentivirus specific. AIDS Res. Hum. Retrovir. 11, 1321–1326 (1995).

    CAS  PubMed  Google Scholar 

  128. Copeland, K. F., McKay, P. J. & Rosenthal, K. L. Suppression of the human immunodeficiency virus long terminal repeat by CD8 T cells is dependent on the NFAT-1 element. AIDS Res. Hum. Retrovir. 12, 143–148 (1996).

    CAS  PubMed  Google Scholar 

  129. Leith, J. G. et al. T cell-derived suppressive activity: evidence of autocrine noncytolytic control of HIV type 1 transcription and replication. AIDS Res. Hum. Retrovir. 15, 1553–1561 (1999).

    CAS  PubMed  Google Scholar 

  130. Tomaras, G. D. et al. CD8 T cell-mediated suppressive activity inhibits HIV-1 after virus entry with kinetics indicating effects on virus gene expression. Proc. Natl Acad. Sci. USA 97, 3503–3508 (2000).

    CAS  PubMed  Google Scholar 

  131. Locher, C. P., Witt, S. A. & Levy, J. A. The nuclear factor κB and Spl binding sites do not appear to be involved in virus suppression by CD8 T lymphocytes. AIDS 15, 2455–2457 (2001).

    CAS  PubMed  Google Scholar 

  132. Walker, C. M., Moody, D. J., Stites, D. P. & Levy, J. A. CD8+ T lymphocyte control of HIV replication in cultured CD4+ cells varies among infected individuals. Cell. Immunol. 119, 470–475 (1989).

    CAS  PubMed  Google Scholar 

  133. Mackewicz, C. E., Ortega, H. W. & Levy, J. A. CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual. J. Clin. Invest. 87, 1462–1466 (1991). Provides early evidence that the natural capacity to produce increased concentrations of HIV-1 suppressor factors correlates with better clinical status in HIV-1 infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Stanford, S. A. et al. Lack of infection in HIV-exposed individuals is associated with a strong CD8+ cell noncytotoxic anti-HIV response. Proc. Natl Acad. Sci. USA 96, 1030–1035 (1999).

    Google Scholar 

  135. Blackbourn, D. J. et al. Suppression of HIV replication by lymphoid tissue CD8+ cells correlates with the clinical state of HIV-infected individuals. Proc. Natl Acad. Sci. USA 93, 13125–13130 (1996).

    CAS  PubMed  Google Scholar 

  136. Garzino-Demo, A., DeVico, A. L. & Gallo, R. C. Chemokine receptors and chemokines in HIV infection. J. Clin. Immunol. 18, 243–255 (1998).

    CAS  PubMed  Google Scholar 

  137. Garzino-Demo, A., DeVico, A. L., Cocchi, F. & Gallo, R. C. β-chemokines and protection from HIV type 1 disease. AIDS Res. Hum. Retrovir. 14 (Suppl.), S177–S184 (1998).

    CAS  PubMed  Google Scholar 

  138. Gallo, R. C., Garzino-Demo, A. & DeVico, A. L. HIV infection and pathogenesis: what about chemokines? J. Clin. Immunol. 19, 293–299 (1999).

    CAS  PubMed  Google Scholar 

  139. Garzino-Demo, A., DeVico, A. L., Conant, K. E. & Gallo, R. C. The role of chemokines in human immunodeficiency virus infection. Immunol. Rev. 177, 79–87 (2000).

    CAS  PubMed  Google Scholar 

  140. Garzino-Demo, A. et al. Spontaneous and antigen-induced production of HIV-inhibitory β-chemokines are associated with AIDS-free status. Proc. Natl Acad. Sci. USA 96, 11986–11991 (1999).

    CAS  PubMed  Google Scholar 

  141. Cocchi, F. et al. Higher macrophage inflammatory protein (MIP)-1α and MIP-1β levels from CD8+ T cells are associated with asymptomatic HIV-1 infection. Proc. Natl Acad. Sci. USA 97, 13812–13817 (2000). This cross-sectional study shows that a natural capacity to release increased concentrations of CCR5 ligands on stimulation correlates with better clinical status in HIV-1 infection.

    CAS  PubMed  Google Scholar 

  142. Liu, H. et al. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc. Natl Acad. Sci. USA 96, 4581–4585 (1999).

    CAS  PubMed  Google Scholar 

  143. McDermott, D. H. et al. Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the multicenter AIDS cohort study. AIDS 14, 2671–2678 (2000).

    CAS  PubMed  Google Scholar 

  144. Gonzales, E. et al. Global survey of genetic variation in CCR5, RANTES, and MIP-1α: impact on the epidemiology of the HIV-1 pandemic. Proc. Natl Acad. Sci. USA 98, 51199–5204 (2001).

    Google Scholar 

  145. An, P. et al. Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc. Natl Acad. Sci. USA 99, 10002–10007 (2002).

    CAS  PubMed  Google Scholar 

  146. Swiss HIV Cohort Study. Human immunodeficiency virus type 1 fitness is a determining factor in viral rebound and set point in chronic infection. J. Virol. 77, 13146–13155 (2003).

  147. Hsueh, F. W., Walker, C. M., Blackbourn, D. J. & Levy, J. A. Suppression of HIV replication by CD8+ cell clones derived from HIV-infected and uninfected individuals. Cell. Immunol. 159, 271–279 (1994).

    CAS  PubMed  Google Scholar 

  148. Rosok, B. et al. CD8+ T cells from HIV type 1-seronegative individuals suppress virus replication in acutely infected cells. AIDS Res. Hum Retrovir. 13, 79–85 (1997).

    CAS  PubMed  Google Scholar 

  149. Levy, J. A., Hsueh, F., Blackbourn, D. J., Wara, D. & Weintrub, P. S. CD8 cell noncytotoxic antiviral activity in human immunodeficiency virus-infected and-uninfected children. J. Infect. Dis. 177, 470–472 (1998).

    CAS  PubMed  Google Scholar 

  150. Zagury, D. et al. C-C chemokines, pivotal in protection against HIV type 1 infection. Proc. Natl Acad. Sci. USA 95, 3857–3861 (1998).

    CAS  PubMed  Google Scholar 

  151. Paxton, W. A. et al. Reduced HIV-1 infectability of CD4+ lymphocytes from exposed-uninfected individuals: association with low expression of CCR5 and high production of β-chemokines. Virology 244, 66–73 (1998). Provides early evidence that patients who remain uninfected despite repeated exposure to HIV-1 have a natural capacity to release high concentrations of soluble suppressor factors.

    CAS  PubMed  Google Scholar 

  152. Wasik, T. J. et al. Protective role of β-chemokines associated with HIV-specific Th responses against perinatal HIV transmission. J. Immunol. 162, 4355–4364 (1999).

    CAS  PubMed  Google Scholar 

  153. Stranford, S. A. et al. Lack of infection in HIV-exposed individuals is associated with a strong CD8+ cell noncytotoxic anti-HIV response. Proc. Natl Acad. Sci. USA 96, 1030–1035 (1999).

    CAS  PubMed  Google Scholar 

  154. Geiben-Lynn, R. et al. Noncytolytic inhibition of X4 virus by bulk CD8+ cells from human immunodeficiency virus type 1 (HIV-1)-infected persons and HIV-1-specific cytotoxic T lymphocytes is not mediated by β-chemokines. J. Virol. 75, 8306–8316 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Skurnick, J. H. et al. Correlates of nontransmission in US women at high risk of human immunodeficiency virus type 1 infection through sexual exposure. J. Infect. Dis. 185, 428–438 (2002).

    PubMed  PubMed Central  Google Scholar 

  156. Watt, G., Kantipong, P. & Jongsakul, K. Decrease in human immunodeficiency virus type 1 load during acute dengue fever. Clin. Infect. Dis. 36, 1067–1069 (2003).

    PubMed  Google Scholar 

  157. Watt, G. et al. HIV-1 suppression during acute scrub-typhus infection. Lancet 356, 475–479 (2000).

    CAS  PubMed  Google Scholar 

  158. Watt, G., Kantipong, P., Jongsakul, K., de Souza, M. & Burnouf, T. Passive transfer of scrub typhus plasma to patients with AIDS: a descriptive clinical study. Q. J. M. 94, 599–607 (2001).

    CAS  Google Scholar 

  159. Moriuchi, M., Tamura, A. & Moriuchi, H. In vitro reactivation of human immunodeficiency virus-1 upon stimulation with scrub typhus rickettsial infection. Am. J. Trop. Med. Hyg. 68, 557–561 (2003).

    PubMed  Google Scholar 

  160. Lefrere, J. J. et al. Carriage of GB virus C/hepatitis G virus RNA is associated with a slower immunologic, virologic, and clinical progression of human immunodeficiency virus disease in coinfected persons. J. Infect. Dis. 179, 783–789 (1999).

    CAS  PubMed  Google Scholar 

  161. Yeo, A. E. et al. Effect of hepatitis G virus infection on progression of HIV infection in patients with hemophilia. Multicenter hemophilia cohort study. Ann. Intern. Med. 132, 959–963 (2000).

    CAS  PubMed  Google Scholar 

  162. Tillmann, H. L. et al. Infection with GB virus C and reduced mortality among HIV-infected patients. N. Engl. J. Med. 345, 715–724 (2001).

    CAS  PubMed  Google Scholar 

  163. Tillmann, H. L. & Manns, M. P. GB virus-C infection in patients infected with the human immunodeficiency virus. Antiviral Res. 52, 83–90 (2001).

    CAS  PubMed  Google Scholar 

  164. Nattermann, J. et al. Regulation of CC chemokine receptor 5 in hepatitis G virus infection. AIDS. 17, 1457–1462 (2003).

    CAS  PubMed  Google Scholar 

  165. Moss, W. J. et al. Suppression of human immunodeficiency virus replication during acute measles. J. Infect. Dis. 185, 1035–1042 (2002).

    PubMed  Google Scholar 

  166. Kokkotou, E. G. et al. In vitro correlates of HIV-2-mediated HIV-1 protection. Proc. Natl Acad. Sci. USA 97, 6797–6802 (2000).

    CAS  PubMed  Google Scholar 

  167. Casoli, C. et al. HTLV-II down-regulates HIV-1 replication in IL-2-stimulated primary PBMC of coinfected individuals through expression of MIP-1α. Blood 95, 2760–2769 (2000).

    CAS  PubMed  Google Scholar 

  168. Douek, D. C. et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417, 95–98 (2002).

    CAS  PubMed  Google Scholar 

  169. Valentin, A. et al. Persistent HIV-1 infection of natural killer cells in patients receiving highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 99, 7015–7020 (2002).

    CAS  PubMed  Google Scholar 

  170. Mancini, M., Hadchouel, M., Tiollais, P. & Michel, M. L. Regulation of hepatitis B virus mRNA expression in a hepatitis B surface antigen transgenic mouse model by IFN-γ-secreting T cells after DNA-based immunization. J. Immunol. 161, 5564–5570 (1998).

    CAS  PubMed  Google Scholar 

  171. Couillin, I. et al. Specific vaccine therapy in chronic hepatitis B: induction of T cell proliferative responses specific for envelope antigens. J. Infect. Dis. 180, 15–26 (1999).

    CAS  PubMed  Google Scholar 

  172. Ren, F., et al. Cytokine-dependent anti-viral role of CD4-positive T cells in therapeutic vaccination against chronic hepatitis B viral infection. J. Med. Virol. 71, 376–384 (2003).

    CAS  PubMed  Google Scholar 

  173. Heredia, A. et al. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV β-chemokines: an approach to suppress R5 strains of HIV-1. Proc. Natl Acad. Sci. USA 100, 10411–10416 (2003).

    CAS  PubMed  Google Scholar 

  174. Heredia, A. et al. Induction of G1 cycle arrest in T lymphocytes results in increased extracellular levels of β-chemokines: a strategy to inhibit R5 HIV-1. Proc. Natl Acad. Sci. USA 100, 4179–4184 (2003).

    CAS  PubMed  Google Scholar 

  175. Castro, B. A., Walker, C. M., Eichberg, J. W. & Levy, J. A. Suppression of human immunodeficiency virus replication by CD8+ cells from infected and uninfected chimpanzees. Cell. Immunol. 132, 246–255 (1991).

    CAS  PubMed  Google Scholar 

  176. Blackbourn, D. J. et al. CD8+ cells from HIV-2-infected baboons control HIV replication. AIDS 11, 737–746 (1997).

    CAS  PubMed  Google Scholar 

  177. Kannagi, M., Chalifoux, L. V., Lord, C. I. & Letvin, N. L. Suppression of simian immunodeficiency virus replication in vitro by CD8+ lymphocytes. J. Immunol. 140, 2237–2242 (1988).

    CAS  PubMed  Google Scholar 

  178. Gauduin, M. C., Glickman, R. L., Means, R. & Johnson, R. P. Inhibition of simian immunodeficiency virus (SIV) replication by CD8+ T lymphocytes from macaques immunized with attenuated SIV. J. Virol. 72, 6315–6324 (1988).

    Google Scholar 

  179. Heeney, J. L. et al. β-chemokines and neutralizing antibody titers correlate with sterilizing immunity generated in HIV-1 vaccinated macaques. Proc. Natl Acad. Sci. USA 95, 10803–10808 (1988).

    Google Scholar 

  180. Leno, M. et al. CD8+ lymphocyte antiviral activity in monkeys immunized with SIV recombinant poxvirus vaccines: potential role in vaccine efficacy. AIDS Res. Hum. Retrovir. 15, 461–470 (1999).

    CAS  PubMed  Google Scholar 

  181. Heeney, J. et al. HIV-1 vaccine-induced immune responses which correlate with protection from SHIV infection: compiled preclinical efficacy datafrom trials with ten different HIV-1 vaccine candidates. Immunol. Lett. 66, 189–195 (1999).

    CAS  PubMed  Google Scholar 

  182. Ahmed, R. K. et al. β-chemokine production in macaques vaccinated with live attenuated virus correlates with protection against simian immunodeficiency virus (SIVsm) challenge. J. Gen. Virol. 80, 1569–1574 (1999).

    CAS  PubMed  Google Scholar 

  183. Lehner, T., et al. Up-regulation of β-chemokines and down-modulation of CCR5 co-receptors inhibit simian immunodeficiency virus transmission in non-human primates. Immunology 99, 569–577 (2000). Evidence from a primate infection model which indicates that vaccines might afford protection from HIV-1 infection by modulating the capacity of the immune system to release soluble suppressor factors.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Ahmed, R. K. et al. Spontaneous production of RANTES and antigen-specific IFN-γ production in macaques vaccinated with SHIV-4 correlates with protection against SIVsm challenge. Clin. Exp. Immunol. 129, 11–18 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, Y. et al. Allo-immunization elicits CD8+ T cell-derived chemokines, HIV suppressor factors and resistance to HIV infection in women. Nature Med. 5, 1004–1009 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Gallo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

hepatitis A virus

hepatitis B virus

HIV-1

human T lymphotrophic virus

simian immunodeficiency virus

vaccinia virus

vesicular stomatitis virus

LocusLink

CCR5

CXCR4

IFNs

TNF

SwissProt

eosinophil-derived neurotoxin

MIP-1α

MIP-1β

Glossary

NATURAL KILLER CELLS

(NK cells). Lymphocytes that do not express the T-cell receptor (TCR) or B-cell receptor (BCR) and which mediate natural killing against prototypical NK-cell-sensitive targets.

γδ-T CELLS

T lymphocytes express a T-cell receptor (TCR) that is composed of either α- and β-subunits (αβTCR) or a TCR that is composed of γ- and δ-subunits (γδTCR). Most (>90%) T cells have an αβTCR that recognizes conventional MHC class I or II ligands. T cells expressing γδTCR are less common and the ligands of this type of receptor are less well characterized.

CYTOKINES

Originally used to describe a group of immunomodulatory growth factors, the term cytokine is now used to describe a diverse group of soluble proteins that modulate the many activities of cells and tissues.

CHEMOKINES

Chemotactic cytokines involved in specific inflammatory responses. They are differentiated into CC or CXC chemokines on the basis of their primary amino acid sequence.

INNATE IMMUNE RESPONSE

The first line of defence against microbial infections. Innate responses do not require the induction of MHC gene products or antigen presentation in the context of MHC molecules.

CD8+ T CELLS

One of the two main classes of T lymphocytes (the other being CD4+ T cells). CD8+ T cells exert cytolytic activity in an antigen-specific manner. They also produce various cytokines to regulate the immune system.

CD4+ HELPER T CELLS

T helper cells that collaborate with antigen-presenting cells in the initiation of an immune response.

CELLULAR IMMUNE RESPONSE

An adaptive immune response that is mediated by CD8+ cytotoxic T lymphocytes that have been primed by dendritic cells and other cell subsets that present viral antigens in conjunction with Class I MHC molecules. Cellular responses help clear viral infections by killing infected cells.

HUMORAL IMMUNE RESPONSE

An adaptive immune response that is mediated by antibodies directed against specific epitopes on viral antigens. These antibodies prevent the intercellular transmission of virions and the reinfection of the host.

NON-CYTOLYTIC SOLUBLE SUPPRESSOR FACTORS

Diffusible molecules that are released during an innate and/or adaptive immune response and which suppress viral replication without killing host cells.

INTERFERONS

(IFNs). Interferons are proteins with potent antiviral activity that are of particular importance during the early response to pathogens. Type I IFNs (α, β and ω) are homologous proteins that interact with a common two-chain receptor (IFNAR1 and IFNAR2). Type II or immune IFN is represented by a single protein (IFN-γ) that interacts with different two-chain receptors (IFN-γR1 and IFN-γR2).

CD8 ANTIVIRAL FACTOR

(CAF). The first reported soluble HIV-1 suppressor activity; CAF is released by primary CD8+ T cells upon activation in vitro.

RANTES

A CC-chemokine that binds to and activates the chemokine receptor CCR5.

MIP-1α AND MIP-1β

Like Rantes, MIP-1α and MIP-1β are CC-chemokines that bind to and activate the chemokine receptor CCR5. All these chemokines block the entry of HIV-1 strains that use CCR5 as a co-receptor.

MACROPHAGE-TROPIC

Also known as R5. A viral phenotype that is defined by the use of CCR5 as the co-receptor for viral entry. These isolates are selectively sensitive to suppression by the soluble suppressor factors RANTES, MIP-1α and MIP-1β, which are natural ligands for CCR5.

T-TROPIC

Also known as X4. A viral phenotype that is defined by the use of CXCR4 as a co-receptor for viral entry. These isolates are not inhibited by RANTES, MIP-1α and MIP-1β, but are sensitive to suppression by other soluble suppressor factors.

DUAL-TROPIC

Also known as R5X4. An HIV-1 phenotype that is defined by the use of either CCR5 or CXCR4 co-receptors for viral entry. These isolates are suppressed by RANTES, MIP-1α and MIP-1β in CCR5-dependent infection systems.

LONG TERMINAL REPEAT

A repeated sequence, several hundred base-pairs long, found at the two ends of the retroviral genome.

LONG-TERM NON-PROGRESSORS

HIV-infected persons who remain clinically healthy for long periods of time in the absence of antiretroviral therapy. These persons seem to have a natural capacity to effectively control HIV-1 infection.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeVico, A., Gallo, R. Control of HIV-1 infection by soluble factors of the immune response. Nat Rev Microbiol 2, 401–413 (2004). https://doi.org/10.1038/nrmicro878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing