Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases

An Erratum to this article was published on 11 December 2017

This article has been updated

Key Points

  • General introduction to bacterial membrane protein insertion and the Sec translocases.

  • Membrane protein topology and targeting to the membrane.

  • 'YidC-only' pathway for bacterial membrane protein insertion.

  • YidC family members and their structure function.

  • Bacterial Sec pathway for membrane protein insertion and comparison with the eukaryotic Sec system in the endoplasmic reticulum.

  • SecYEG structure.

  • Folding, assembly and quality control of bacterial membrane proteins.

  • Conclusion: resolved problems and open questions.

Abstract

This Review describes the pathways that are used to insert newly synthesized proteins into the cytoplasmic membranes of bacteria, and provides insight into the function of two of the evolutionarily conserved translocases that catalyse this process. These highly sophisticated translocases are responsible for decoding the topogenic sequences within membrane proteins that direct membrane protein insertion and orientation. The role of the Sec and YidC translocases in the folding of bacterial membrane proteins is also highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The machinery that is involved in membrane protein insertion.
Figure 2: Membrane insertion of the lipoprotein CyoA.
Figure 3: The interaction of YidC with TM segments.
Figure 4: The SecYEβ structure and the lateral gate.

Similar content being viewed by others

Change history

  • 11 December 2017

    This article was published with an incorrect DOI. The correct DOI is 10.1038/nrmicro3595. This has now been corrected in the online version. We apologize to the authors and to readers for any confusion caused.

References

  1. Daley, D. O. et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321–1323 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Casadio, R., Fariselli, P., Finocchiaro, G. & Martelli, P. L. Fishing new proteins in the twilight zone of genomes: the test case of outer membrane proteins in Escherichia coli K12, Escherichia coli O157:H7, and other Gram-negative bacteria. Protein Sci. 12, 1158–1168 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ito, K. & Akiyama, Y. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol. 59, 211–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Shimohata, N., Nagamori, S., Akiyama, Y., Kaback, H. R. & Ito, K. SecY alterations that impair membrane protein folding and generate a membrane stress. J. Cell Biol. 176, 307–317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tokuda, H. & Matsuyama, S. Sorting of lipoproteins to the outer membrane in E. coli . Biochim. Biophys. Acta 1693, 5–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Dalbey, R. E. & Chen, M. Sec-translocase mediated membrane protein biogenesis. Biochim. Biophys. Acta 1694, 37–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Luirink, J., von Heijne, G., Houben, E. & de Gier, J. W. Biogenesis of inner membrane proteins in Escherichia coli . Annu. Rev. Microbiol. 59, 329–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Muller, M. & Klosgen, R. B. The Tat pathway in bacteria and chloroplasts. Mol. Membr. Biol. 22, 113–121 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. Lee, P. A., Tullman-Ercek, D. & Georgiou, G. The bacterial twin-arginine translocation pathway. Annu. Rev. Microbiol. 60, 373–395 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hatzixanthis, K., Palmer, T. & Sargent, F. A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Mol. Microbiol. 49, 1377–1390 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Yi, L. & Dalbey, R. E. Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria. Mol. Membr. Biol. 22, 101–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kiefer, D. & Kuhn, A. YidC as an essential and multifunctional component in membrane protein assembly. Int. Rev. Cytol. 259, 113–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Hardy, S. J. & Randall, L. L. Recognition of ligands by SecB, a molecular chaperone involved in bacterial protein export. Philos. Trans. R. Soc. Lond. B 339, 343–352; discussion 352–354 (1993).

    Article  CAS  Google Scholar 

  14. Ulbrandt, N. D., Newitt, J. A. & Bernstein, H. D. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88, 187–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Macfarlane, J. & Muller, M. The functional integration of a polytopic membrane protein of Escherichia coli is dependent on the bacterial signal-recognition particle. Eur. J. Biochem. 233, 766–771. (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Schierle, C. F., Berkmen, M., Huber, D., Kumamoto, C., Boyd, D. & Beckwith, J. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J. Bacteriol. 185, 5706–5713 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bowers, C. W., Lau, F. & Silhavy, T. J. Secretion of LamB–LacZ by the signal recognition particle pathway of Escherichia coli . J. Bacteriol. 185, 5697–5705 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raine, A. et al. Targeting and insertion of heterologous membrane proteins in E. coli . Biochimie 85, 659–668 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Luirink, J. & Sinning, I. SRP-mediated protein targeting: structure and function revisited. Biochim. Biophys. Acta 1694, 17–35 (2004). A useful report on how proteins are targeted to the membrane by the SRP pathway in the three domains of life.

    CAS  PubMed  Google Scholar 

  20. Valent, Q. A. et al. Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol. Microbiol. 25, 53–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Herskovits, A. A. et al. Evidence for coupling of membrane targeting and function of the signal recognition particle (SRP) receptor FtsY. EMBO Rep. 2, 1040–1046 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Facey, S. J., Neugebauer, S. A., Krauss, S. & Kuhn, A. The mechanosensitive channel protein MscL is targeted by the SRP to the novel YidC membrane insertion pathway of Escherichia coli . J. Mol. Biol. 365, 995–1004 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Gallusser, A. & Kuhn, A. Initial steps in protein membrane insertion. Bacteriophage M13 procoat protein binds to the membrane surface by electrostatic interaction. EMBO J. 9, 2723–2729 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Gier, J. W. et al. Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli . Proc. Natl Acad. Sci. USA 95, 14646–14651 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Gier, J. W. et al. Assembly of a cytoplasmic membrane protein in Escherichia coli is dependent on the signal recognition particle. FEBS Lett. 399, 307–309 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Scotti, P. A. et al. YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J. 19, 542–549 (2000). Showed that a portion of YidC co-purifies with the Sec translocase and that YidC makes contact with the TM region of a membrane protein during insertion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stuart, R. A. & Neupert, W. Making membranes in bacteria. Nature 406, 575–577 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Samuelson, J. C. et al. YidC mediates membrane protein insertion in bacteria. Nature 406, 637–641 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Samuelson, J. C. et al. Function of YidC for the insertion of M13 procoat protein in E. coli: translocation of mutants that show differences in their membrane potential dependence and Sec-requirement. J. Biol. Chem. 276, 34847–34852 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, M. et al. Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion. J. Biol. Chem. 277, 7670–7675 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Geller, B. L. & Wickner, W. M13 procoat inserts into liposomes in the absence of other membrane proteins. J. Biol. Chem. 260, 13281–13285 (1985).

    CAS  PubMed  Google Scholar 

  32. Serek, J. et al. Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J. 23, 294–301 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Der Laan, M. et al. A conserved function of YidC in the biogenesis of respiratory chain complexes. Proc. Natl Acad. Sci. USA 100, 5801–5806 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yi, L., Celebi, N., Chen, M. & Dalbey, R. E. Sec/SRP requirements and energetics of membrane insertion of subunits a, b, and c of the Escherichia coli F1F0 ATP synthase. J. Biol. Chem. 279, 39260–39267 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. van Bloois, E., Jan Haan, G., de Gier, J. W., Oudega, B. & Luirink, J. F1F0 ATP synthase subunit c is targeted by the SRP to YidC in the E. coli inner membrane. FEBS Lett. 576, 97–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Celebi, N., Yi, L., Facey, S. J., Kuhn, A. & Dalbey, R. E. Membrane biogenesis of subunit II of cytochrome bo oxidase: contrasting requirements for insertion of N-terminal and C-terminal domains. J. Mol. Biol. 357, 1428–1436 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. van Bloois, E., Haan, G. J., de Gier, J. W., Oudega, B. & Luirink, J. Distinct requirements for translocation of the N-tail and C-tail of the Escherichia coli inner membrane protein CyoA. J. Biol. Chem. 281, 10002–10009 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. du Plessis, D. J., Nouwen, N. & Driessen, A. J. Subunit a of cytochrome o oxidase requires both YidC and SecYEG for membrane insertion. J. Biol. Chem. 281, 12248–12252 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. van Der Laan, M., Bechtluft, P., Kol, S., Nouwen, N. & Driessen, A. J. F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J. Cell Biol. 165, 213–222 (2004). References 32 and 39 show that YidC is sufficient to promote the membrane insertion of Sec-independent proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yen, M. R., Harley, K. T., Tseng, Y. H. & Saier, M. H. Jr. Phylogenetic and structural analyses of the oxa1 family of protein translocases. FEMS Microbiol. Lett. 204, 223–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Luirink, J., Samuelsson, T. & de Gier, J. W. YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS Lett. 501, 1–5 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, F. et al. Chloroplast YidC homolog Albino3 can functionally complement the bacterial YidC depletion strain and promote membrane insertion of both bacterial and chloroplast thylakoid proteins. J. Biol. Chem. 277, 19281–19288 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. van Bloois, E. et al. The Sec-independent function of Escherichia coli YidC is evolutionary-conserved and essential. J. Biol. Chem. 280, 12996–13003 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Preuss, M., Ott, M., Funes, S., Luirink, J. & Herrmann, J. M. Evolution of mitochondrial Oxa proteins from bacterial YidC. Inherited and acquired functions of a conserved protein insertion machinery. J. Biol. Chem. 280, 13004–13011 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Jia, L. et al. Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J. 22, 6438–6447 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Szyrach, G., Ott, M., Bonnefoy, N., Neupert, W. & Herrmann, J. M. Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO J. 22, 6448–6457 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tjalsma, H., Bron, S. & van Dijl, J. M. Complementary impact of paralogous Oxa1-like proteins of Bacillus subtilis on post-translocational stages in protein secretion. J. Biol. Chem. 278, 15622–15632 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Hasona, A. et al. Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc. Natl Acad. Sci. USA 102, 17466–17471 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bender, G. R., Sutton, S. V. & Marquis, R. E. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect. Immun. 53, 331–338 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nouwen, N. & Driessen, A. J. SecDFyajC forms a heterotetrameric complex with YidC. Mol. Microbiol. 44, 1397–1405 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Xie, K., Kiefer, D., Nagler, G., Dalbey, R. E. & Kuhn, A. Different regions of the nonconserved large periplasmic domain of Escherichia coli YidC are involved in the SecF interaction and membrane insertase activity. Biochemistry 45, 13401–13408 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Oliver, D. C. & Paetzel, M. Crystal structure of the major periplasmic domain of the bacterial membrane protein assembly facilitator YidC. J. Biol. Chem. 19 Dec 2007 (doi:10.1074/jbc.M708936200).

    Article  PubMed  CAS  Google Scholar 

  53. Jiang, F. et al. Defining the regions of Escherichia coli YidC that contribute to activity. J. Biol. Chem. 278, 48965–48972 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Nargang, F. E., Preuss, M., Neupert, W. & Herrmann, J. M. The Oxa1 protein forms a homooligomeric complex and is an essential part of the mitochondrial export translocase in Neurospora crassa . J. Biol. Chem. 277, 12846–12853 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Veenendaal, A. K., van der Does, C. & Driessen, A. J. The protein-conducting channel SecYEG. Biochim. Biophys. Acta 1694, 81–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Papanikou, E., Karamanou, S. & Economou, A. Bacterial protein secretion through the translocase nanomachine. Nature Rev. Microbiol. 5, 839–851 (2007).

    Article  CAS  Google Scholar 

  57. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004). A landmark paper on the structure of the Sec translocation channel in archaea.

    Article  CAS  PubMed  Google Scholar 

  58. Pogliano, J. A. & Beckwith, J. SecD and SecF facilitate protein export in Escherichia coli . EMBO J. 13, 554–561 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, M. et al. Involvement of SecDF and YidC in the membrane insertion of M13 procoat mutants. Biochemistry 44, 10741–10749 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Vrontou, E. & Economou, A. Structure and function of SecA, the preprotein translocase nanomotor. Biochim. Biophys. Acta 1694, 67–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Gelis, I. et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131, 756–769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuhn, A. Alterations in the extracellular domain of M13 procoat protein make its membrane insertion dependent on secA and secY . Eur. J. Biochem. 177, 267–271 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Andersson, H. & von Heijne, G. Sec dependent and Sec independent assembly of E. coli inner membrane proteins: the topological rules depend on chain length. EMBO J. 12, 683–691 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cao, G., Kuhn, A. & Dalbey, R. E. The translocation of negatively charged residues across the membrane is driven by the electrochemical potential: evidence for an electrophoresis-like membrane transfer mechanism. EMBO J. 14, 866–875 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deitermann, S., Sprie, G. S. & Koch, H. G. A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli . J. Biol. Chem. 280, 39077–39085 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005). This paper reports the features of a polypeptide segment that promotes lateral release from the Sec translocon into the ER membrane.

    Article  CAS  PubMed  Google Scholar 

  67. Kuhn, A., Stuart, R., Henry, R. & Dalbey, R. E. The Alb3/Oxa1/YidC protein family: membrane-localized chaperones facilitating membrane protein insertion? Trends Cell Biol. 13, 510–516 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Houben, E. N., ten Hagen-Jongman, C. M., Brunner, J., Oudega, B. & Luirink, J. The two membrane segments of leader peptidase partition one by one into the lipid bilayer via a Sec/YidC interface. EMBO Rep. 5, 970–975 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beck, K. et al. YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep. 2, 709–714 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cannon, K. S., Or, E., Clemons, W. M. Jr, Shibata, Y. & Rapoport, T. A. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169, 219–225 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maillard, A. P., Lalani, S., Silva, F., Belin, D. & Duong, F. Deregulation of the SecYEG translocation channel upon removal of the plug domain. J. Biol. Chem. 282, 1281–1287 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380–3388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Harris, C. R. & Silhavy, T. J. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438–3444 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Hanein, D. et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Osborne, A. R. & Rapoport, T. A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318–324 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome–Sec61 complex. Science 278, 2123–2126 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Crowley, K. S., Liao, S., Worrell, V. E., Reinhart, G. D. & Johnson, A. E. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461–471 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. von Heijne, G. Recent advances in the understanding of membrane protein assembly and structure. Q. Rev. Biophys. 32, 285–307 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Popot, J. L. & Engelman, D. M. Helical membrane protein folding, stability, and evolution. Annu. Rev. Biochem. 69, 881–922 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Nagamori, S., Smirnova, I. N. & Kaback, H. R. Role of YidC in folding of polytopic membrane proteins. J. Cell Biol. 165, 53–62 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stenberg, F., von Heijne, G. & Daley, D. O. Assembly of the cytochrome bo 3 complex. J. Mol. Biol. 371, 765–773 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Kulajta, C., Thumfart, J. O., Haid, S., Daldal, F. & Koch, H. G. Multi-step assembly pathway of the cbb 3 -type cytochrome c oxidase complex. J. Mol. Biol. 355, 989–1004 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Hiser, L. & Hosler, J. P. Heme A is not essential for assembly of the subunits of cytochrome c oxidase of Rhodobacter sphaeroides . J. Biol. Chem. 276, 45403–45407 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Nijtmans, L. G., Taanman, J. W., Muijsers, A. O., Speijer, D. & Van den Bogert, C. Assembly of cytochrome-c oxidase in cultured human cells. Eur. J. Biochem. 254, 389–394 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Wielburski, A. & Nelson, B. D. Heme a induces assembly of rat liver cytochrome c oxidase subunits I–III in isolated mitochondria. FEBS Lett. 177, 291–294 (1984).

    Article  CAS  PubMed  Google Scholar 

  88. Kihara, A., Akiyama, Y. & Ito, K. FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc. Natl Acad. Sci. USA 92, 4532–4536 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Akiyama, Y., Kihara, A. & Ito, K. Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli . FEBS Lett. 399, 26–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Kihara, A., Akiyama, Y. & Ito, K. Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J. 18, 2970–2981 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Akiyama, Y., Kanehara, K. & Ito, K. RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J. 23, 4434–4442 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sakoh, M., Ito, K. & Akiyama, Y. Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli . J. Biol. Chem. 280, 33305–33310 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Maegawa, S., Ito, K. & Akiyama, Y. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 44, 13543–13552 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Paschen, S. A. et al. Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature 426, 862–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Gentle, I., Gabriel, K., Beech, P., Waller, R. & Lithgow, T. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J. Cell Biol. 164, 19–24 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kozjak, V. et al. An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J. Biol. Chem. 278, 48520–48523 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Bolter, B., Soll, J., Schulz, A., Hinnah, S. & Wagner, R. Origin of a chloroplast protein importer. Proc. Natl Acad. Sci. USA 95, 15831–15836 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ruiz, N., Falcone, B., Kahne, D. & Silhavy, T. J. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121, 307–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli . Cell 121, 235–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Sklar, J. G. et al. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli . Proc. Natl Acad. Sci. USA 104, 6400–6405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Clantin, B. et al. Structure of the membrane protein FhaC: a member of the Omp85–TpsB transporter superfamily. Science 317, 957–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Robert, V. et al. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol. 4, e377 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Habib, S. J. et al. The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial β-barrel proteins. J. Cell Biol. 176, 77–88 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rapoport, T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Yuan, J., Henry, R., McCaffery, M. & Cline, K. SecA homolog in protein transport within chloroplasts: evidence for endosymbiont-derived sorting. Science 266, 796–798 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Laidler, V., Chaddock, A. M., Knott, T. G., Walker, D. & Robinson, C. A SecY homolog in Arabidopsis thaliana. Sequence of a full-length cDNA clone and import of the precursor protein into chloroplasts. J. Biol. Chem. 270, 17664–17667 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Schuenemann, D., Amin, P., Hartmann, E. & Hoffman, N. E. Chloroplast SecY is complexed to SecE and involved in the translocation of the 33-kDa but not the 23-kDa subunit of the oxygen-evolving complex. J. Biol. Chem. 274, 12177–12182 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Hartmann, E. et al. Evolutionary conservation of components of the protein translocation complex. Nature 367, 654–657 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Rapoport, T. A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65, 271–303 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Ring, G. & Eichler, J. Extreme secretion: protein translocation across the archael plasma membrane. J. Bioenerg. Biomembr. 36, 35–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Pohlschroder, M., Hartmann, E., Hand, N. J., Dilks, K. & Haddad, A. Diversity and evolution of protein translocation. Annu. Rev. Microbiol. 59, 91–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Goder, V. & Spiess, M. Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. EMBO J. 22, 3645–3653 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liao, S., Lin, J., Do, H. & Johnson, A. E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Woolhead, C. A., McCormick, P. J. & Johnson, A. E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Lu, J. & Deutsch, C. Secondary structure formation of a transmembrane segment in Kv channels. Biochemistry 44, 8230–8243 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Lu, J. & Deutsch, C. Folding zones inside the ribosomal exit tunnel. Nature Struct. Mol. Biol. 12, 1123–1129 (2005).

    Article  CAS  Google Scholar 

  119. Do, H., Falcone, D., Lin, J., Andrews, D. W. & Johnson, A. E. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369–378 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Sadlish, H., Pitonzo, D., Johnson, A. E. & Skach, W. R. Sequential triage of transmembrane segments by Sec61α during biogenesis of a native multispanning membrane protein. Nature Struct. Mol. Biol. 12, 870–878 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of R.E.D. was supported by National Institutes of Health Grant GM63862-05. The authors thank A. Kuhn for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross E. Dalbey.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Escherichia coli

Methanococcus jannaschii

Neisseria meningitidis

Neurospora crassa

Rhodobacter capsulatus

Streptococcus mutans

Entrez Protein

Omp85

SecA

SecB

SecE

SecF

SecG

SecY

YaeT

YajC

YfgL

YidC

FURTHER INFORMATION

Ross E. Dalbey's homepage

Glossary

Type I membrane protein

A protein which contains a single membrane-spanning domain that has its carboxyl terminus orientated towards the cytoplasm and its amino terminus orientated towards the lumen of membrane compartments or in an extracellular direction.

Type II membrane protein

A single-spanning membrane protein that has the opposite topology to a type I membrane protein.

Signal-recognition particle

A complex that is responsible for targeting nascent polypeptides to the cell membranes, and identifies an amino-terminal signal sequence that is carried by proteins that are destined for secretion or membrane localization.

Two-partner secretion system

A secretion system that is composed of two distinct proteins; one is secreted and the other is its transporter.

Signal anchor

A topogenic sequence that signals the initiation of translocation of the carboxy-terminal region of a membrane protein, and remains as a membrane anchor with an NinCout orientation. Also known as a type II signal anchor.

Reverse signal anchor

A topogenic sequence that signals the initiation of translocation of the amino-terminal region of a membrane protein, and remains as a membrane-spanning region that has an NoutCin orientation. Also known as a type I signal anchor.

Signal peptidase II

A signal peptidase that proteolytically removes lipoprotein signal sequences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, K., Dalbey, R. Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat Rev Microbiol 6, 234–244 (2008). https://doi.org/10.1038/nrmicro3595

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing