Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From bench to bedside: stealth of enteroinvasive pathogens

Key Points

  • This article discusses recent advances in our understanding of the molecular basis of host–pathogen interactions that help explain the clinical presentation and pathology of the enteric fever syndrome.

  • Approaches to the integration of molecular bacterial pathogenesis research and the clinical presentation of infectious diseases are illustrated by discussing the pathogenesis of typhoid fever, brucellosis and yersiniosis.

  • The article focuses on virulence strategies that are shared by pathogens which cause enteric fever and how these strategies could help explain similarities in host responses and the disease outcome.

  • Recent research indicates that bacteria associated with enteric fever alter their 'bar code' to conceal their identity from the host, resulting in a clinical presentation that is difficult to distinguish from viral or parasitic infections.

Abstract

Bacterial enteric infections are often associated with diarrhoea or vomiting, which are clinical presentations commonly referred to as gastroenteritis. However, some enteric pathogens, including typhoidal Salmonella serotypes, Brucella species and enteropathogenic Yersinia species are associated with a clinical syndrome that is characterized by abdominal pain and/or fever and is distinct from acute gastroenteritis. Recent insights into molecular mechanisms of the host–pathogen interaction show that these enteric pathogens share important characteristics that explain why the initial host responses associated with these agents more closely resemble host responses to viral or parasitic infections. Host responses contribute to the clinical presentation of disease and improved understanding of these responses in the laboratory is beginning to bridge the gap between bench and bedside.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major syndromes of enteric infection.
Figure 2: Comparison of host responses elicited in patients with bacteraemia.
Figure 3: Function of the viaB locus in Vi-capsule biosynthesis and evasion of detection by TLR4 and TLR5.
Figure 4: Lipid A structures of Salmonella serovars, Brucella species and Yersinia species.

Similar content being viewed by others

References

  1. Guerrant, R. L. in Principles and Practices of Infectious Diseases (eds Mandell, G. L., Bennett, J. E. & Dolin, R.) 945–962 (Churchill Livingstone, New York, 1995).

    Google Scholar 

  2. Harris, J. C., Dupont, H. L. & Hornick, R. B. Fecal leukocytes in diarrheal illness. Ann. Intern. Med. 76, 697–703 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Herrington, D. A. et al. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 168, 1487–1492 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Evans, D. G., Satterwhite, T. K., Evans, D. J. Jr & DuPont, H. L. Differences in serological responses and excretion patterns of volunteers challenged with enterotoxigenic Escherichia coli with and without the colonization factor antigen. Infect. Immun. 19, 883–888 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tacket, C. O. et al. Role of EspB in experimental human enteropathogenic Escherichia coli infection. Infect. Immun. 68, 3689–3695 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Finkelstein, R. A. & LoSpalluto, J. J. Pathogenesis of experimental cholera. Preparation and isolation of choleragen and choleragenoid. J. Exp. Med. 130, 185–202 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Raffatellu, M. et al. Capsule-mediated immune evasion: a new hypothesis explaining aspects of typhoid fever pathogenesis. Infect. Immun. 74, 19–27 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsolis, R. M., Adams, L. G., Ficht, T. A. & Bäumler, A. J. Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect. Immun. 67, 4879–4885 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Parsot, C. Shigella spp. and enteroinvasive Escherichia coli pathogenicity factors. FEMS Microbiol. Lett. 252, 11–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  11. Franchi, L. et al. Intracellular NOD-like receptors in innate immunity, infection and disease. Cell. Microbiol. 10, 1–8 (2008).

    CAS  PubMed  Google Scholar 

  12. Hoebe, K., Janssen, E. & Beutler, B. The interface between innate and adaptive immunity. Nature Immunol. 5, 971–974 (2004).

    Article  CAS  Google Scholar 

  13. McGovern, V. J. & Slavutin, L. J. Pathology of Salmonella colitis. Am. J. Surg. Pathol. 3, 483–490 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Murphy, T. F. & Gorbach, S. L. Salmonella colitis. NY State J. Med. 82, 1236–1238 (1982).

    CAS  Google Scholar 

  15. Day, D. W., Mandal, B. K. & Morson, B. C. The rectal biopsy appearances in Salmonella colitis. Histopathology 2, 117–131 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Alvarado, T. Faecal leucocytes in patients with infectious diarrhoea. Trans. R. Soc. Trop. Med. Hyg. 77, 316–320 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Guyot, J., Gonvers, J. J., Pyndiah, N. & Heitz, M. Value of fecal leukocyte studies in cases of acute diarrhea. Schweiz. Med. Wochenschr. 114, 634–636 (1984).

    CAS  PubMed  Google Scholar 

  18. Rothwell, N. J. Mechanisms of the pyrogenic actions of cytokines. Eur. Cytokine Netw. 1, 211–213 (1990).

    CAS  PubMed  Google Scholar 

  19. Young, E. J. in Brucellosis: Clinical and Laboratory Aspects (eds Young, E. J. & Corbel, M. J.) 97–126 (CRC, Boca Raton, 1989).

    Google Scholar 

  20. Shorter, N. A., Thompson, M. D., Mooney, D. P. & Modlin, J. F. Surgical aspects of an outbreak of Yersinia enterocolitis. Pediatr. Surg. Int. 13, 2–5 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Bitar, R. & Tarpley, J. Intestinal perforation and typhoid fever: a historical and state-of-the-art review. Rev. Infect. Dis. 7, 257 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Sprinz, H., Gangarosa, E. J., Williams, M., Hornick, R. B. & Woodward, T. E. Histopathology of the upper small intestines in typhoid fever. Biopsy study of experimental disease in man. Am. J. Dig. Dis. 11, 615–624 (1966).

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen, Q. C. et al. A clinical, microbiological, and pathological study of intestinal perforation associated with typhoid fever. Clin. Infect. Dis. 39, 61–67 (2004).

    Article  PubMed  Google Scholar 

  24. Mukawi, T. J. Histopathological study of typhoid perforation of the small intestines. Southeast Asian J. Trop. Med. Public Health 9, 252–255 (1978).

    CAS  PubMed  Google Scholar 

  25. Kraus, M. D., Amatya, B. & Kimula, Y. Histopathology of typhoid enteritis: morphologic and immunophenotypic findings. Mod. Pathol. 12, 949–955 (1999).

    CAS  PubMed  Google Scholar 

  26. Koj, A. Initiation of acute phase response and synthesis of cytokines. Biochim. Biophys. Acta 1317, 84–94 (1996).

    Article  PubMed  Google Scholar 

  27. Tewari, A., Buhles, W. C. Jr & Starnes, H. F. Jr. Preliminary report: effects of interleukin-1 on platelet counts. Lancet 336, 712–714 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Fleisher, G. R. Management of children with occult bacteremia who are treated in the emergency department. Rev. Infect. Dis. 13 (Suppl 2), 156–159 (1991).

    Article  Google Scholar 

  29. Abdool Gaffar, M. S., Seedat, Y. K., Coovadia, Y. M. & Khan, Q. The white cell count in typhoid fever. Trop. Geogr. Med. 44, 23–27 (1992).

    CAS  PubMed  Google Scholar 

  30. Bondarev, L. S., Tseneva, G., Domashenko, O. N., Rastuntsev, L. P. & Lugovaia Iu, V. The mononuclear syndrome in yersiniosis and pseudotuberculosis. Lik Sprava Sep–Dec, 154–156 (1994).

  31. Waage, A., Brandtzaeg, P., Espevik, T. & Halstensen, A. Current understanding of the pathogenesis of gram-negative shock. Infect. Dis. Clin. North Am. 5, 781–791 (1991).

    CAS  PubMed  Google Scholar 

  32. Beutler, B. & Kruys, V. Lipopolysaccharide signal transduction, regulation of tumor necrosis factor biosynthesis, and signaling by tumor necrosis factor itself. J. Cardiovasc. Pharmacol. 25, S1–S8 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Galofre, J. et al. Analysis of factors influencing the outcome and development of septic metastasis or relapse in Salmonella bacteremia. Clin. Infect. Dis. 18, 873–878 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Khan, S. A. et al. A lethal role for lipid A in Salmonella infections. Mol. Microbiol. 29, 571–579 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Engelberts, I., von Asmuth, E. J., van der Linden, C. J. & Buurman, W. A. The interrelation between TNF, IL-6, and PAF secretion induced by LPS in an in vivo and in vitro murine model. Lymphokine Cytokine Res. 10, 127–131 (1991).

    CAS  PubMed  Google Scholar 

  36. Wilson, R. P. et al. The Vi-capsule prevents Toll-like receptor 4 recognition of Salmonella. Cell. Microbiol. 10, 876–890 (2008). Showed for the first time that the Vi capsule prevents recognition of Salmonella serovars by TLR4.

    Article  CAS  PubMed  Google Scholar 

  37. Kilbourn, R. G. & Belloni, P. Endothelial cell production of nitrogen oxides in response to interferon γ in combination with tumor necrosis factor, interleukin-1, or endotoxin. J. Natl Cancer Inst. 82, 772–776 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Petros, A., Bennett, D. & Vallance, P. Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet 338, 1557–1558 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Kilbourn, R. G. et al. Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem. Biophys. Res. Commun. 172, 1132–1138 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Conkling, P. R., Greenberg, C. S. & Weinberg, J. B. Tumor necrosis factor induces tissue factor-like activity in human leukemia cell line U937 and peripheral blood monocytes. Blood 72, 128–133 (1988).

    CAS  PubMed  Google Scholar 

  41. Carlsen, E., Flatmark, A. & Prydz, H. Cytokine-induced procoagulant activity in monocytes and endothelial cells. Further enhancement by cyclosporine. Transplantation 46, 575–580 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Butler, T., Bell, W. R., Levin, J., Linh, N. N. & Arnold, K. Typhoid fever. Studies of blood coagulation, bacteremia, and endotoxemia. Arch. Intern. Med. 138, 407–410 (1978).

    Article  CAS  PubMed  Google Scholar 

  43. Cunha, B. A. Typhoid fever: the temporal relations of key clinical diagnostic points. Lancet Infect. Dis. 6, 318–320; author reply 320–321 (2006).

    Article  PubMed  Google Scholar 

  44. Connor, B. A. & Schwartz, E. Typhoid and paratyphoid fever in travellers. Lancet Infect. Dis. 5, 623–628 (2005).

    Article  PubMed  Google Scholar 

  45. Dharmana, E., Keuter, M., Netea, M. G., Verschueren, I. C. & Kullberg, B. J. Divergent effects of tumor necrosis factor-alpha and lymphotoxin-alpha on lethal endotoxemia and infection with live Salmonella typhimurium in mice. Eur. Cytokine Netw. 13, 104–109 (2002).

    CAS  PubMed  Google Scholar 

  46. Bignold, L. P., Rogers, S. D., Siaw, T. M. & Bahnisch, J. Inhibition of chemotaxis of neutrophil leukocytes to interleukin-8 by endotoxins of various bacteria. Infect. Immun. 59, 4255–4258 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001). This study established that bacterial flagellin is a MAMP recognized by TLR5.

    Article  CAS  PubMed  Google Scholar 

  48. Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. & Madara, J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001). The first evidence that Salmonella flagellin induces pro-inflammatory responses in intestinal epithelial cells.

    CAS  PubMed  Google Scholar 

  49. Zeng, H. et al. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J. Immunol. 171, 3668–3674 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Winter, S. E., Raffatellu, M., Wilson, R. P., Russmann, H. & Bäumler, A. J. The Salmonella enterica serotype Typhi regulator TviA reduces interleukin-8 production in intestinal epithelial cells by repressing flagellin secretion. Cell. Microbiol. 10, 247–261 (2008). First study to show that flagellated bacteria can evade recognition through TLR5 gene regulation.

    CAS  PubMed  Google Scholar 

  51. Wyant, T. L., Tanner, M. K. & Sztein, M. B. Salmonella typhi flagella are potent inducers of proinflammatory cytokine secretion by human monocytes. Infect. Immun. 67, 3619–3624 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Parkhill, J. et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848–852 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Hirose, K. et al. Survival of Vi-capsulated and Vi-deleted Salmonella typhi strains in cultured macrophage expressing different levels of CD14 antigen. FEMS Microbiol. Lett. 147, 259–265 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Sharma, A. & Qadri, A. Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc. Natl Acad. Sci. USA 101, 17492–17497 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raffatellu, M. et al. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect. Immun. 73, 3367–3374 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heyns, K. & Kiessling, G. Strukturaufklarung des Vi-antigens aus Citrobacter freundii (E. coli) 5396/38. Carbohydr. Res. 3, 340–353 (1967).

    Article  CAS  Google Scholar 

  57. Virlogeux, I., Waxin, H., Ecobichon, C. & Popoff, M. Y. Role of the viaB locus in synthesis, transport and expression of Salmonella typhi Vi antigen. Microbiology 141, 3039–3047 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Raffatellu, M. et al. The capsule encoding the viaB locus reduces interleukin-17 expression and mucosal innate responses in the bovine intestinal mucosa during infection with Salmonella enterica serotype Typhi. Infect. Immun. 75, 4342–4350 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barquero-Calvo, E. et al. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS ONE 2, e631 (2007). This study shows that B. abortus uses a stealth tactic to evade TLR4 recognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lapaque, N. et al. Differential inductions of TNF-α and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cell. Microbiol. 8, 401–413 (2006). This analysis shows how changes in the chemical composition of lipid A can affect TLR4-dependent host responses.

    Article  CAS  PubMed  Google Scholar 

  61. Andersen-Nissen, E. et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl Acad. Sci. USA 102, 9247–9252 (2005). Identification of flagellin sequence variation as a mechanism by which flagellated bacteria can evade recognition through TLR5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Svetic, A., Jian, Y. C., Lu, P., Finkelman, F. D. & Gause, W. C. Brucella abortus induces a novel cytokine gene expression pattern characterized by elevated IL-10 and IFN-γ in CD4+ T cells. Int. Immunol. 5, 877–883 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Zhan, Y., Kelso, A. & Cheers, C. Cytokine production in the murine response to Brucella infection or immunization with antigenic extracts. Immunology 80, 458–464 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Roux, C. M. et al. Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell. Microbiol. 9, 1851–1869 (2007). This analysis of the host response to Brucella spp. infection illustrates the stealth of the pathogen.

    Article  CAS  PubMed  Google Scholar 

  65. Oellerich, M. F. et al. Yersinia enterocolitica infection of mice reveals clonal invasion and abscess formation. Infect. Immun. 75, 3802–3811 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Marceau, M. Transcriptional regulation in Yersinia: an update. Curr. Issues Mol. Biol. 7, 151–177 (2005).

    CAS  PubMed  Google Scholar 

  67. Bottone, E. J. Yersinia enterocolitica: a panoramic view of a charismatic microorganism. CRC Crit. Rev. Microbiol. 5, 211–241 (1977).

    Article  CAS  PubMed  Google Scholar 

  68. Young, G. M., Smith, M. J., Minnich, S. A. & Miller, V. L. The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J. Bacteriol. 181, 2823–2833 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Horne, S. M. & Pruss, B. M. Global gene regulation in Yersinia enterocolitica: effect of FliA on the expression levels of flagellar and plasmid-encoded virulence genes. Arch. Microbiol. 185, 115–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Kapatral, V., Olson, J. W., Pepe, J. C., Miller, V. L. & Minnich, S. A. Temperature-dependent regulation of Yersinia enterocolitica class III flagellar genes. Mol. Microbiol. 19, 1061–1071 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Kapatral, V. et al. Gene array analysis of Yersinia enterocolitica FlhD and FlhC: regulation of enzymes affecting synthesis and degradation of carbamoylphosphate. Microbiology 150, 2289–2300 (2004).

    CAS  PubMed  Google Scholar 

  72. Kapatral, V. & Minnich, S. A. Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes. Mol. Microbiol. 17, 49–56 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Minnich, S. A. & Rohde, H. N. A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host. Adv. Exp. Med. Biol. 603, 298–310 (2007).

    Article  PubMed  Google Scholar 

  74. Rebeil, R., Ernst, R. K., Gowen, B. B., Miller, S. I. & Hinnebusch, B. J. Variation in lipid A structure in the pathogenic yersiniae. Mol. Microbiol. 52, 1363–1373 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Guo, L. et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 189–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Oertelt, C., Lindner, B., Skurnik, M. & Holst, O. Isolation and structural characterization of an R-form lipopolysaccharide from Yersinia enterocolitica serotype O:8. Eur. J. Biochem. 268, 554–564 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Kawahara, K., Tsukano, H., Watanabe, H., Lindner, B. & Matsuura, M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect. Immun. 70, 4092–4098 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Logsdon, L. K. & Mecsas, J. A non-invasive quantitative assay to measure murine intestinal inflammation using the neutrophil marker lactoferrin. J. Immunol. Methods 313, 183–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Carter, P. B. Pathogenicity of Yersinia enterocolitica for mice. Infect. Immun. 11, 164–170 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rivano, M. T. et al. Histiocytic necrotizing lymphadenitis without granulocytic infiltration (Kikuchi's lymphadenitis). Morphological and immunohistochemical study of eight cases. Histopathology 11, 1013–1027 (1987).

    Article  CAS  PubMed  Google Scholar 

  81. Tipple, M. A. et al. Sepsis associated with transfusion of red cells contaminated with Yersinia enterocolitica. Transfusion 30, 207–213 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Arduino, M. J. et al. Growth and endotoxin production of Yersinia enterocolitica and Enterobacter agglomerans in packed erythrocytes. J. Clin. Microbiol. 27, 1483–1485 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schwalbe, B. et al. Fatal Yersinia infection after intraoperative transfusion. Anasthesiol. Intensivmed. Notfallmed. Schmerzther. 31, 658–660 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Bach, A., Bohrer, H. & Mathias, D. Transfusion-induced Yersinia infection. Dtsch. Med. Wochenschr. 115, 1232–1234 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Sansonetti, P. J., Arondel, J., Huerre, M., Harada, A. & Matsushima, K. Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. Infect. Immun. 67, 1471–1480 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Raffatellu, M. et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nature Med. 14, 421–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Godinez, I. et al. T cells help to amplify inflammatory responses induced by Salmonella enterica serotype Typhimurium in the intestinal mucosa. Infect. Immun. 76, 2008–2017 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bottone, E. J., Gullans, C. R. & Sierra, M. F. Disease spectrum of Yersinia enterocolitica serogroup 0:3, the predominant cause of human infection in New York City. Contrib. Microbiol. Immunol. 9, 56–60 (1987).

    CAS  PubMed  Google Scholar 

  89. Shapiro, E. D. Yersinia enterocolitica septicemia in normal infants. Am. J. Dis. Child. 135, 477–478 (1981).

    CAS  PubMed  Google Scholar 

  90. Piroth, L., Meyer, P., Bielefeld, P. & Besancenot, J. F. Yersinia bacteremia and iron overload. Rev. Med. Interne 18, 932–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Robins-Browne, R. M., Prpic, J. K. & Stuart, S. J. Yersiniae and iron. A study in host–parasite relationships. Contrib. Microbiol. Immunol. 9, 254–258 (1987).

    CAS  PubMed  Google Scholar 

  92. Ku, C. L. et al. Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J. Exp. Med. 204, 2407–2422 (2007). An important clinical study which showed that TLR signalling has an important role in host defence against pyogenic bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Knirel, Y. A. et al. Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis. Biochemistry 44, 1731–1743 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Montminy, S. W. et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nature Immunol. 7, 1066–1073 (2006). A milestone article which revealed the importance of TLR4 signalling in the clearance of Y. pestis infections.

    Article  CAS  Google Scholar 

  95. Finkelstein, R. A., Boesman, M., Neoh, S. H., LaRue, M. K. & Delaney, R. Dissociation and recombination of the subunits of the cholera enterotoxin (choleragen). J. Immunol. 113, 145–150 (1974).

    CAS  PubMed  Google Scholar 

  96. Gill, D. M. The arrangement of subunits in cholera toxin. Biochemistry 15, 1242–1248 (1976).

    Article  CAS  PubMed  Google Scholar 

  97. King, C. A. & Van Heyningen, W. E. Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside. J. Infect. Dis. 127, 639–647 (1973).

    Article  CAS  PubMed  Google Scholar 

  98. van Heyningen, S. The subunits of cholera toxin: structure, stoichiometry, and function. J. Infect. Dis. 133 (Suppl.), 5–13 (1976).

    Article  PubMed  Google Scholar 

  99. Cassel, D. & Selinger, Z. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc. Natl Acad. Sci. USA 74, 3307–3311 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mekalanos, J. J., Collier, R. J. & Romig, W. R. Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J. Biol. Chem. 254, 5855–5861 (1979).

    CAS  PubMed  Google Scholar 

  101. Mekalanos, J. J., Collier, R. J. & Romig, W. R. Enzymic activity of cholera toxin. I. New method of assay and the mechanism of ADP-ribosyl transfer. J. Biol. Chem. 254, 5849–5854 (1979).

    CAS  PubMed  Google Scholar 

  102. Gill, D. M. Mechanism of action of cholera toxin. Adv. Cyclic Nucleotide Res. 8, 85–118 (1977).

    CAS  PubMed  Google Scholar 

  103. Cassel, D. & Pfeuffer, T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Natl Acad. Sci. USA 75, 2669–2673 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Santos, R. L., Zhang, S., Tsolis, R. M., Bäumler, A. J. & Adams, L. G. Morphologic and molecular characterization of Salmonella typhimurium infection in neonatal calves. Vet. Pathol. 39, 200–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Santos, R. L., Tsolis, R. M., Bäumler, A. J. & Adams, L. G. Dynamics of hematologic and blood chemical changes in Salmonella typhimurium infected calves. Am. J. Vet. Res. 63, 1145–1150 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, H., Zhou, Y., Bao, H. & Liu, H. W. Vi antigen biosynthesis in Salmonella typhi: characterization of UDP-N-acetylglucosamine C-6 dehydrogenase (TviB) and UDP-N-acetylglucosaminuronic acid C-4 epimerase (TviC). Biochemistry 45, 8163–8173 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Ferguson, G. P. et al. Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc. Natl Acad. Sci. USA 101, 5012–5017 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Health Service grants AI050553 (to R.M.T.), AI067676 (to G.M.Y.), AI042081 (to J.V.S.), and AI040124, AI044170 and AI079173 (to A.J.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas J. Bäumler.

Related links

Related links

DATABASES

Entrez Genome Project

Brucella abortus

Corynebacterium diphteriae

Escherichia coli

S. Enteritidis

S. Typhi

S. Typhimurium

Vibrio cholerae

Yersinia enterocolitica

Yersinia pestis

Yersinia pseudotuberculosis

Entrez Protein

IFN

IL-1β

IL-6

TLR1

TLR2

TLR3

TLR4

TLR5

TLR6

TLR7

TLR8

TNF-α

FURTHER INFORMATION

Andreas J. Bäumler's homepage

Glossary

Lamina propria

Connective tissue that underlies the epithelium of mucosal surfaces.

Pattern-recognition receptor

A receptor of the innate immune-surveillance system that recognizes and responds to conserved microorganism-associated molecular patterns.

Reactive microscopic pattern

Microscopic pathological changes in tissue.

Exudative inflammation

Reactive microscopic pattern characterized by acutely increased vascular permeability, neutrophil recruitment and the formation of tissue exudates above surfaces or within spaces.

Pyogenic bacteria

Pus-forming bacteria that are associated with exudative inflammation and neutrophil recruitment.

Pyrogenic cytokine

A fever-inducing cytokine, including interleukin-1 (IL-1), IL-6, tumour necrosis factor-α and interferon.

Interstitial inflammation

Reactive microscopic pattern characterized by inflammatory infiltrates that are dominated by macrophages, dendritic cells and/or lymphocytes.

Atypical bacteria

Bacteria that differ from pyogenic bacteria, in that they do not elicit neutrophil recruitment during infection.

Neutrophilia

Increased counts of neutrophils in the blood.

Intravascular coagulopathy

Formation of blood clots in blood vessels owing to activation of the clotting cascade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsolis, R., Young, G., Solnick, J. et al. From bench to bedside: stealth of enteroinvasive pathogens. Nat Rev Microbiol 6, 883–892 (2008). https://doi.org/10.1038/nrmicro2012

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing