Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Opinion

On the move: endosomes in fungal growth and pathogenicity

Abstract

Fungi invade substrates, such as host tissues, through hyphal tip growth. This article focuses on the corn smut fungus Ustilago maydis, in which tip growth and pathogenicity involve apical endocytic recycling by early endosomes. These organelles rapidly move bi-directionally along microtubules and this movement is mediated by opposing molecular motors. This motility seems to be essential for extended hyphal growth, possibly because it focuses the endocytic machinery at the hyphal tip and mediates communication between the tip and the sub-apical nucleus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The life cycle of Ustilago maydis.
Figure 2: Recycling of the pheromone receptor Pra1 in wild-type and Yup1ts mutants.
Figure 3: Concepts of microtubule-based bi-directional organelle transport.
Figure 4: The role of kinesin-1, kinesin-3 and dynein in early endosome motility and apical recycling in Ustilago maydis.
Figure 5: Potential roles for long-distance transport of early endosomes in pheromone signalling.

Similar content being viewed by others

References

  1. Bartnicki-Garcia, S., Bartnicki, D. D., Gierz, G., Lopez-Franco, R. & Bracker, C. E. Evidence that Spitzenkorper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Exp. Mycol. 19, 153–159 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Harris, S. D. et al. Polarisome meets spitzenkorper: microscopy, genetics, and genomics converge. Euk. Cell 4, 225–229 (2005).

    Article  CAS  Google Scholar 

  3. Sietsma, J. H., Beth Din, A., Ziv, V., Sjollema, K. A. & Yarden, O. The localization of chitin synthase in membranous vesicles (chitosomes) in Neurospora crassa. Microbiology 142, 1591–1596 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Weber, I., Assmann, D., Thines, E. & Steinberg, G. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18, 225–242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartnicki-Garcia, S. Chitosomes: past, present and future. FEMS Yeast Res. 6, 957–965 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Hoffmann, J. & Mendgen, K. Endocytosis and membrane turnover in the germ tube of Uromyces fabae. Fungal Genet. Biol. 24, 77–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Crampin, H. et al. Candida albicans hyphae have a Spitzenkorper that is distinct from the polarisome found in yeast and pseudohyphae. J. Cell Sci. 118, 2935–2947 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Fischer-Parton, S. et al. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J. Microsc. 198, 246–259 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. D'Hondt, K., Heese-Peck, A. & Riezman, H. Protein and lipid requirements for endocytosis. Annu. Rev. Genet. 34, 255–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Pelham, H. R. Insights from yeast endosomes. Curr. Opin. Cell Biol. 14, 454–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Engqvist-Goldstein, A. E. & Drubin, D. G. Actin assembly and endocytosis: from yeast to mammals. Annu. Rev. Cell Dev. Biol. 19, 287–332 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Ziman, M., Chuang, J. S. & Schekman, R. W. Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol. Biol. Cell 7, 1909–1919 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  Google Scholar 

  14. Valdez-Taubas, J. & Pelham, H. R. Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr. Biol. 13, 1636–1640 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Read, N. D. & Kalkman, E. R. Does endocytosis occur in fungal hyphae? Fungal Genet. Biol. 39, 199–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Fuchs, U. & Steinberg, G. Endocytosis in the plant-pathogenic fungus Ustilago maydis. Protoplasma 226, 75–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Penalva, M. A. Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genet. Biol. 42, 963–975 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Wedlich-Söldner, R., Bölker, M., Kahmann, R. & Steinberg, G. A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus Ustilago maydis. EMBO J. 19, 1974–1986 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feldbrügge, M., Kamper, J., Steinberg, G. & Kahmann, R. Regulation of mating and pathogenic development in Ustilago maydis. Curr. Opin. Microbiol. 7, 666–672 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Banuett, F. & Herskowitz, I. Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122, 2965–2976 (1996).

    CAS  PubMed  Google Scholar 

  21. Bölker, M., Genin, S., Lehmler, C. & Kahmann, R. Genetic regulation of mating and dimorphism in Ustilago maydis. Can. J. Bot. 73, 320–325 (1995).

    Article  Google Scholar 

  22. Banuett, F. Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu. Rev. Genet. 29, 179–208 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Straube, A., Weber, I. & Steinberg, G. A novel mechanism of nuclear envelope break-down in a fungus: nuclear migration strips off the envelope. EMBO J. 24, 1674–1685 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fink, G., Schuchardt, I., Colombelli, J., Stelzer, E. & Steinberg, G. Dynein-mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis. EMBO J. 25, 4897–4908 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Straube, A., Hause, G., Fink, G. & Steinberg, G. Conventional kinesin mediates microtubule–microtubule interactions in vivo. Mol. Biol. Cell 17, 907–916 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fink, G. & Steinberg, G. Dynein-dependent motility of microtubules and nucleation sites supports polarization of the tubulin array in the fungus Ustilago maydis. Mol. Biol. Cell 17, 3242–3253 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spellig, T., Bölker, M., Lottspeich, F., Frank, R. W. & Kahmann, R. Pheromones trigger filamentous growth in Ustilago maydis. EMBO J. 13, 1620–1627 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garcia-Muse, T., Steinberg, G. & Perez-Martin, J. Pheromone-induced G2 arrest in the phytopathogenic fungus Ustilago maydis. Euk. Cell 2, 494–500 (2003).

    Article  CAS  Google Scholar 

  29. Snetselaar, K. M., Bolker, M. & Kahmann, R. Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet. Biol. 20, 299–312 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Fuchs, U., Hause, G., Schuchardt, I. & Steinberg, G. Endocytosis is essential for pathogenic development in the corn smut fungus Ustilago maydis. Plant Cell 18, 2066–2081 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lehmler, C. et al. Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J. 16, 3464–3473 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gow, N. A. R. in The Growing Fungus (eds Gow, N. A. R. & Gadd, G. M.) 403–422 (Chapman & Hall, London, 1995).

    Book  Google Scholar 

  33. Kämper, J. et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 144, 97–101 (2006).

    Article  CAS  Google Scholar 

  34. Ghannoum, M. A. Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 13, 122–143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tucker, S. L. & Talbot, N. J. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu. Rev. Phytopathol. 39, 385–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Monod, M. et al. Secreted proteases from pathogenic fungi. Int. J. Med. Microbiol. 292, 405–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Mendgen, K. & Hahn, M. Plant infection and the establishment of fungal biotrophy. Trends Plant Sci. 7, 352–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Steinberg, G. The cellular roles of molecular motors in fungi. Trends Microbiol. 8, 162–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Fuchs, U., Manns, I. & Steinberg, G. Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol. Biol. Cell 16, 2746–2758 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weber, I., Gruber, C. & Steinberg, G. A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15, 2826–2842 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roncero, C. The genetic complexity of chitin synthesis in fungi. Curr. Genet. 41, 367–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Madrid, M. P., Di Pietro, A. & Roncero, M. I. Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol. Microbiol. 47, 257–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Ellson, C. D., Andrews, S., Stephens, L. R. & Hawkins, P. T. The PX domain: a new phosphoinositide-binding module. J. Cell Sci. 115, 1099–1105 (2002).

    CAS  PubMed  Google Scholar 

  44. Behnia, R. & Munro, S. Organelle identity and the signposts for membrane traffic. Nature 438, 597–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Gorvel, J. P., Chavrier, P., Zerial, M. & Gruenberg, J. rab5 controls early endosome fusion in vitro. Cell 64, 915–925 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715–728 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Bölker, M., Urban, M. & Kahmann, R. The a mating type locus of U. maydis specifies cell signaling components. Cell 68, 441–450 (1992).

    Article  PubMed  Google Scholar 

  48. Müller, P., Weinzierl, G., Brachmann, A., Feldbrügge, M. & Kahmann, R. Mating and pathogenic development of the smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Euk. Cell 2, 1187–1199 (2003).

    Article  CAS  Google Scholar 

  49. Davis, N. G., Horecka, J. L. & Sprague, G. F. Jr. Cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. J. Cell Biol. 122, 53–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Straube, A., Brill, M., Oakley, B. R., Horio, T. & Steinberg, G. Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. Mol. Biol. Cell 14, 642–657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lenz, J. H., Schuchardt, I., Straube, A. & Steinberg, G. A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J. 25, 2275–2286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wedlich-Söldner, R., Straube, A., Friedrich, M. W. & Steinberg, G. A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J. 21, 2946–2957 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gross, S. P. Hither and yon: a review of bi-directional microtubule-based transport. Phys. Biol. 1, R1–R11 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Welte, M. A. Bidirectional transport along microtubules. Curr. Biol. 14, R525–R537 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, J., Li, S., Fischer, R. & Xiang, X. Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol. Biol. Cell 14, 1479–1488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Higuchi, Y., Nakahama, T., Shoji, J. Y., Arioka, M. & Kitamoto, K. Visualization of the endocytic pathway in the filamentous fungus Aspergillus oryzae using an EGFP-fused plasma membrane protein. Biochem. Biophys. Res. Commun. 340, 784–791 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Bullock, S. L., Nicol, A., Gross, S. P. & Zicha, D. Guidance of bidirectional motor complexes by mRNA cargoes through control of dynein number and activity. Curr. Biol. 16, 1447–1452 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Klopfenstein, D. R., Tomishige, M., Stuurman, N. & Vale, R. D. Role of phosphatidylinositol(4,5)bisphosp-hate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jacobs, C. W., Mattichak, S. J. & Knowles, J. F. Budding patterns during cell cycle of the maize smut pathogen Ustilago maydis. Can. J. Bot. 72, 1675–1680 (1994).

    Article  Google Scholar 

  60. Weinzierl, G. et al. Regulation of cell separation in the dimorphic fungus Ustilago maydis. Mol. Microbiol. 45, 219–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Stenmark, H. & Aasland, R. FYVE-finger proteins — effectors of an inositol lipid. J. Cell Sci. 112, 4175–4183 (1999).

    CAS  PubMed  Google Scholar 

  62. Chen, L. & Davis, N. G. Recycling of the yeast a-factor receptor. J. Cell Biol. 151, 731–738 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Proszynski, T. J., Klemm, R., Bagnat, M., Gaus, K. & Simons, K. Plasma membrane polarization during mating in yeast cells. J. Cell Biol. 173, 861–866 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Howe, C. L. Modeling the signaling endosome hypothesis: why a drive to the nucleus is better than a (random) walk. Theor. Biol. Med. Model 2, 43 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Miaczynska, M., Pelkmans, L. & Zerial, M. Not just a sink: endosomes in control of signal transduction. Curr. Opin. Cell Biol. 16, 400–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Howe, C. L. & Mobley, W. C. Long-distance retrograde neurotrophic signaling. Curr. Opin. Neurobiol. 15, 40–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Brunswik, H. in Botanische Abhandlungen (ed. Goebel, K.) 1–152 (Gustav Fischer, Jena, 1924).

    Google Scholar 

  68. Girbardt, M. Die Ultrastruktur der Apikalregion von Pilzhyphen. Protoplasma 67, 413–441 (1969).

    Article  Google Scholar 

  69. Grove, S. N. & Bracker, C. E. Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkorper. J. Bacteriol. 104, 989–1009 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lopez-Franco, R. & Bracker, C. E. Diversity and dynamics of the Spitzenkörper in growing hyphal tips of higher fungi. Protoplasma 195, 90–111 (1996).

    Article  Google Scholar 

  71. Reynaga-Pena, C. G., Gierz, G. & Bartnicki-Garcia, S. Analysis of the role of the Spitzenkorper in fungal morphogenesis by computer simulation of apical branching in Aspergillus niger. Proc. Natl Acad. Sci. USA 94, 9096–9101 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Bartnicki-Garcia, S., Hergert, F. & Gierz, G. Computer simulation of fungal morphogenesis and the mathematical basis for hyphal tip growth. Protoplasma 153, 46–57 (1989).

    Article  Google Scholar 

  73. Bartnicki-Garcia, S. in Molecular Biology of Fungal Development (ed. Osiewacz, H. D.) 29–58 (Marcel Dekker, New York, 2002).

    Google Scholar 

  74. Sharpless, K. E. & Harris, S. D. Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol. Biol. Cell 13, 469–479 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Evangelista, M., Zigmond, S. & Boone, C. Formins: signaling effectors for assembly and polarization of actin filaments. J. Cell Sci. 116, 2603–2611 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Schuchardt, I., Assmann, D., Thines, E., Schuberth, C. & Steinberg, G. Myosin-V, Kinesin-1, and Kinesin-3 cooperate in hyphal growth of the fungus Ustilago maydis. Mol. Biol. Cell 16, 5191–5201 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grosshans, B. L., Ortiz, D. & Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl Acad. Sci. USA 103, 11821–11827 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  79. Jordens, I., Marsman, M., Kuijl, C. & Neefjes, J. Rab proteins, connecting transport and vesicle fusion. Traffic 6, 1070–1077 (2005).

    Article  CAS  Google Scholar 

  80. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Stenmark, H., Aasland, R. & Driscoll, P. C. The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Lett. 513, 77–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Hoepfner, S. et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121, 437–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nature Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  84. Wang, L., Merz, A. J., Collins, K. M. & Wickner, W. Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J. Cell Biol. 160, 365–374 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sato, T. K., Darsow, T. & Emr, S. D. Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol. Cell Biol. 18, 5308–5319 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nielsen, E. et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol. 151, 601–612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to my research team, who are responsible for the rapid progress in understanding endocytosis and endosome motility in U. maydis. In addition, I wish to thank R. Kahmann for continuous support and K. Brune for improving the manuscript. Our work is supported by the International Max Planck Research School and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Candida albicans

Coprinopsis cinerea

Histoplasma capsulatum

Saccharomyces cerevisiae

Ustilago maydis

FURTHER INFORMATION

Gero Steinberg's homepage

Munich Information Centre for Protein Sequences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, G. On the move: endosomes in fungal growth and pathogenicity. Nat Rev Microbiol 5, 309–316 (2007). https://doi.org/10.1038/nrmicro1618

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing