Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Sensing by bacterial regulatory systems in host and non-host environments

Abstract

Free-living organisms have the ability to gauge their surroundings and modify their gene expression patterns in ways that help them cope with new environments. Here we discuss the physiological significance of recent reports describing the ability of the Salmonella typhimurium PhoP/PhoQ two-component system to recognize and respond to host-derived antimicrobial peptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model illustrating the PhoP/PhoQ regulatory network of Salmonella enterica serovar Typhimurium (S. typhimurium).

Similar content being viewed by others

References

  1. Dominguez-Bernal, G. et al. Repression of the RcsC-YojN-RcsB phosphorelay by the IgaA protein is a requisite for Salmonella virulence. Mol. Microbiol. 53, 1437–1449 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Calderon, C. B., Garcia-Quintanilla, M., Casadesus, J. & Ramos-Morales, F. Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of the Rcs system. Microbiology 151, 579–588 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Humphreys, S. et al. Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium. Infect. Immun. 72, 4654–4661 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mouslim, C., Delgado, M. & Groisman, E. A. Activation of the RcsC/YojN/RcsB phosphorelay system attenuates Salmonella virulence. Mol. Microbiol. 54, 386–395 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Lyon, G. J. & Novick, R. P. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25, 1389–1403 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561 (2002).

    Article  PubMed  Google Scholar 

  7. Curtiss, R. 3rd & Kelly, S. M. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect. Immun. 55, 3035–3043 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saier, M. H., Ramseier, T. M. & Reizer, J. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Niedhardt, F. C. et al.) 1325–1343 (ASM Press, Washington DC, 1996).

    Google Scholar 

  9. Krukonis, E. S. & DiRita, V. J. From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr. Opin. Microbiol. 6, 186–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Welch, T. J. & Bartlett, D. H. Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol. Microbiol. 27, 977–985 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Bader, M. W. et al. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol. Microbiol. 50, 219–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Bader, M. W. et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122, 461–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Vaara, M. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 56, 395–411 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cho, U. S. et al. Metal bridges between the PhoQ sensor domain and the membrane regulate transmembrane signaling. J. Mol. Biol. 356, 1193–1206 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Castelli, M. E., Cauerhff, A., Amongero, M., Soncini, F. C. & Vescovi, E. G. The H box-harboring domain is key to the function of the Salmonella enterica PhoQ Mg2+-sensor in the recognition of its partner PhoP. J. Biol. Chem. 278, 23579–23585 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Montagne, M., Martel, A. & Le Moual, H. Characterization of the catalytic activities of the PhoQ histidine protein kinase of Salmonella enterica serovar Typhimurium. J. Bacteriol. 183, 1787–1791 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chamnongpol, S., Cromie, M. & Groisman, E. A. Mg2+ sensing by the Mg2+ sensor PhoQ of Salmonella enterica. J. Mol. Biol. 325, 795–807 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, Y. W., Jin, S., Sim, W. S. & Nester, E. W. Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc. Natl Acad. Sci. USA 92, 12245–12249 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ernst, R. K., Guina, T. & Miller, S. I. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect. 3, 1327–1334 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Guina, T., Yi, E. C., Wang, H., Hackett, M. & Miller, S. I. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to α-helical antimicrobial peptides. J. Bacteriol. 182, 4077–4086 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fields, P. I., Swanson, R. V., Haidaris, C. G. & Heffron, F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl Acad. Sci. USA 83, 5189–5193 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosenberger, C. M., Gallo, R. L. & Finlay, B. B. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc. Natl Acad. Sci. USA 101, 2422–2427 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Zwir, I. et al. Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc. Natl Acad. Sci. USA 102, 2862–2867 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Groisman, E. A. The pleiotropic two-component regulatory system PhoP–PhoQ. J. Bacteriol. 183, 1835–1842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Soncini, F. C. & Groisman, E. A. Two-component regulatory systems can interact to process multiple environmental signals. J. Bacteriol. 178, 6796–6801 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alpuche Aranda, C. M., Swanson, J. A., Loomis, W. P. & Miller, S. I. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc. Natl Acad. Sci. USA 89, 10079–10083 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garcia Vescovi, E., Soncini, F. C. & Groisman, E. A. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84, 165–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Kox, L. F., Wosten, M. M. & Groisman, E. A. A small protein that mediates the activation of a two-component system by another two-component system. EMBO J. 19, 1861–1872 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brodsky, I. E., Ernst, R. K., Miller, S. I. & Falkow, S. mig-14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides. J. Bacteriol. 184, 3203–3213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tierrez, A. & Garcia- del Portillo, F. The Salmonella membrane protein IgaA modulates the activity of the RcsC-YojN-RcsB and PhoP-PhoQ regulons. J. Bacteriol. 186, 7481–7489 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mouslim, C., Latifi, T. & Groisman, E. A. Signal-dependent requirement for the co-activator protein RcsA in transcription of the RcsB-regulated ugd gene. J. Biol. Chem. 278, 50588–50595 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Hancock, R. E. & Diamond, G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8, 402–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev. Microbiol. 3, 238–250 (2005).

    Article  CAS  Google Scholar 

  36. Wade, D. et al. All-D amino acid-containing channel-forming antibiotic peptides. Proc. Natl Acad. Sci. USA 87, 4761–4765 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Majdalani, N., Chen, S., Murrow, J., St John, K. & Gottesman, S. Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol. Microbiol. 39, 1382–1394 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Peterson, C. N., Carabetta, V. J., Chowdhury, T. & Silhavy, T. J. LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli. J. Bacteriol. 188, 3175–3181 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sailer, F. C., Meberg, B. M. & Young, K. D. β-Lactam induction of colanic acid gene expression in Escherichia coli. FEMS Microbiol. Lett. 226, 245–249 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Majdalani, N. & Gottesman, S. The Rcs phosphorelay: a complex signal transduction system. Annu. Rev. Microbiol. 59, 379–405 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Detweiler, C. S., Monack, D. M., Brodsky, I. E., Mathew, H. & Falkow, S. virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol. Microbiol. 48, 385–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Groisman, E. A., Chiao, E., Lipps, C. J. & Heffron, F. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl Acad. Sci. USA 86, 7077–7081 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Groisman, E. A., Heffron, F. & Solomon, F. Molecular genetic analysis of the Escherichia coli phoP locus. J. Bacteriol. 174, 486–491 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lesley, J. A. & Waldburger, C. D. Comparison of the Pseudomonas aeruginosa and Escherichia coli PhoQ sensor domains: evidence for distinct mechanisms of signal detection. J. Biol. Chem. 276, 30827–30833 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Chamnongpol, S. & Groisman, E. A. Mg2+ homeostasis and avoidance of metal toxicity. Mol. Microbiol. 44, 561–571 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Minagawa, S. et al. Isolation and molecular characterization of the locked-on mutant of Mg2+ sensor PhoQ in Escherichia coli. Biosci. Biotechnol. Biochem. 69, 1281–1287 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Minagawa, S. et al. Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J. Bacteriol. 185, 3696–3702 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, D. et al. Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis. FEMS Microbiol. Lett. 250, 85–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Winfield, M. D., Latifi, T. & Groisman, E. A. Transcriptional regulation of the 4-amino-4-deoxy-L-arabinose biosynthetic genes in Yersinia pestis. J. Biol. Chem. 280, 14765–14772 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Moss, J. E., Fisher, P. E., Vick, B., Groisman, E. A. & Zychlinsky, A. The regulatory protein PhoP controls susceptibility to the host inflammatory response in Shigella flexneri. Cell. Microbiol. 2, 443–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Llama-Palacios, A., Lopez-Solanilla, E., Poza-Carrion, C., Garcia-Olmedo, F. & Rodriguez-Palenzuela, P. The Erwinia chrysanthemi phoP-phoQ operon plays an important role in growth at low pH, virulence and bacterial survival in plant tissue. Mol. Microbiol. 49, 347–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Derzelle, S. et al. The PhoP-PhoQ two-component regulatory system of Photorhabdus luminescens is essential for virulence in insects. J. Bacteriol. 186, 1270–1279 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McPhee, J. B., Lewenza, S. & Hancock, R. E. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 50, 205–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Ernst, R. K. et al. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286, 1561–1565 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Soncini, F. C., Garcia Vescovi, E., Solomon, F. & Groisman, E. A. Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J. Bacteriol. 178, 5092–5099 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Groisman, E. A., Kayser, J. & Soncini, F. C. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J. Bacteriol. 179, 7040–7045 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo, L. et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 189–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Shi, Y., Latifi, T., Cromie, M. J. & Groisman, E. A. Transcriptional control of the antimicrobial peptide resistance ugtL gene by the Salmonella PhoP and SlyA regulatory proteins. J. Biol. Chem. 279, 38618–38625 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Belden, W. J. & Miller, S. I. Further characterization of the PhoP regulon: identification of new PhoP-activated virulence loci. Infect. Immun. 62, 5095–5101 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bijlsma, J. J. & Groisman, E. A. The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica. Mol. Microbiol. 57, 85–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Norte, V. A., Stapleton, M. R. & Green, J. PhoP-responsive expression of the Salmonella enterica serovar Typhimurium slyA gene. J. Bacteriol. 185, 3508–3514 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shi, Y., Cromie, M. J., Hsu, F. F., Turk, J. & Groisman, E. A. PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol. Microbiol, 53, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Bajaj, V., Lucas, R. L., Hwang, C. & Lee, C. A. Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbiol. 22, 703–714 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Fields, P. I., Groisman, E. A. & Heffron, F. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243, 1059–1062 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Behlau, I. & Miller, S. I. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J. Bacteriol. 175, 4475–4484 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brodsky, I. E., Ghori, N., Falkow, S. & Monack, D. Mig-14 is an inner membrane-associated protein that promotes Salmonella typhimurium resistance to CRAMP, survival within activated macrophages and persistent infection. Mol. Microbiol. 55, 954–972 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Uchiya, K. et al. A Salmonella virulence protein that inhibits cellular trafficking. EMBO J. 18, 3924–3933 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blanc-Potard, A. B. & Groisman, E. A. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 16, 5376–5385 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Groisman, E. A. The ins and outs of virulence gene expression: Mg2+ as a regulatory signal. Bioessays 20, 96–101 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Steele-Mortimer, O., St-Louis, M., Olivier, M. & Finlay, B. B. Vacuole acidification is not required for survival of Salmonella enterica serovar Typhimurium within cultured macrophages and epithelial cells. Infect. Immun. 68, 5401–5404 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garvis, S. G., Beuzon, C. R. & Holden, D. W. A role for the PhoP/Q regulon in inhibition of fusion between lysosomes and Salmonella-containing vacuoles in macrophages. Cell. Microbiol. 3, 731–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Lee, C. A., Jones, B. D. & Falkow, S. Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc. Natl Acad. Sci. USA 89, 1847–1851 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Galan, J. E. & Curtiss, R. 3rd. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl Acad. Sci. USA 86, 6383–6387 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Salzman, N. H. et al. Enteric Salmonella infection inhibits Paneth cell antimicrobial peptide expression. Infect. Immun. 71, 1109–1115 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vazquez-Torres, A. et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Martin-Orozco, N. et al. Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages. Mol. Biol. Cell 17, 498–510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garcia-del Portillo, F., Foster, J. W., Maguire, M. E. & Finlay, B. B. Characterization of the micro-environment of Salmonella typhimurium-containing vacuoles within MDCK epithelial cells. Mol. Microbiol. 6, 3289–3297 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, A. K., Detweiler, C. S. & Falkow, S. OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J. Bacteriol. 182, 771–781 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Buchmeier, N. et al. A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica. Mol. Microbiol. 35, 1375–1382 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Lavigne, J. P., O'Callaghan, D. & Blanc-Potard, A. B. Requirement of MgtC for Brucella suis intramacrophage growth: a potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg2+ environment. Infect. Immun. 73, 3160–3163 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, L. et al. Recognition of host immune activation by Pseudomonas aeruginosa. Science 309, 774–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Rediers, H., Vanderleyden, J. & De Mot, R. Azotobacter vinelandii: a Pseudomonas in disguise? Microbiology 150, 1117–1119 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Winfield, M. D. & Groisman, E. A. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 69, 3687–3694 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for discussions. Our research on the PhoP/PhoQ system is funded in part by the National Institutes of Health. E.A.G. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo A. Groisman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Agrobacterium tumefaciens

Azotobacter vinelnadii

Brucella suis

Erwinia chrysanthemi

Escherichia coli

Klebsiella pneumoniae

Photorhabdus luminescens

Photobacterium profundum SS9

Pseudomonas aeruginosa

Salmonella typhimurium

Shigella flexneri

Vibrio cholerae

Yersinia pestis

FURTHER INFORMATION

Eduardo A. Groisman's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groisman, E., Mouslim, C. Sensing by bacterial regulatory systems in host and non-host environments. Nat Rev Microbiol 4, 705–709 (2006). https://doi.org/10.1038/nrmicro1478

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing