Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Regulation of apicomplexan actin-based motility

Abstract

Apicomplexan parasites are an ancient group of protozoan parasites that includes several significant pathogens of humans and animals. To target and invade host cells they use a unique form of actin-based motility, called gliding motility. At the centre of the molecular motor that underlies this unique mode of locomotion are short, highly dynamic actin filaments. Recent molecular work, along with the availability of completed genomes for several Apicomplexa, has highlighted unique features of parasite actin and its regulation ? features that might provide new ways to block motility and, consequently, prevent infection and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of actin-based motility in microorganisms.
Figure 2: Model for apicomplexan gliding motility.
Figure 3: An overview of common eukaryote actin-binding proteins.
Figure 4: Aspects of apicomplexan actin.

Similar content being viewed by others

References

  1. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453?465 (2003).

    CAS  PubMed  Google Scholar 

  2. Stevens, J. M., Galyov, E. E. & Stevens, M. P. Actin-dependent movement of bacterial pathogens. Nature Rev. Microbiol. 4, 91?101 (2006).

    CAS  Google Scholar 

  3. Morrissette, N. S. & Sibley, L. D. Cytoskeleton of apicomplexan parasites. Microbiol. Mol. Biol. Rev. 66, 21?38 (2002).

    PubMed  PubMed Central  Google Scholar 

  4. Soldati, D. & Meissner, M. Toxoplasma as a novel system for motility. Curr. Opin. Cell. Biol. 16, 32?40 (2004).

    CAS  PubMed  Google Scholar 

  5. King, C. A. Cell motility of sporozoan protozoa. Parasitol. Today 4, 315?319 (1988).

    CAS  PubMed  Google Scholar 

  6. Blackman, M. J. & Bannister, L. H. Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. Mol. Biochem. Parasitol. 117, 11?25 (2001).

    CAS  PubMed  Google Scholar 

  7. Cowman, A. F. & Crabb, B. S. Invasion of human red blood cells by malaria parasites. Cell 124, 755?766 (2006).

    CAS  PubMed  Google Scholar 

  8. Carruthers, V. B. & Sibley, L. D. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur. J. Cell Biol. 73, 114?123 (1997).

    CAS  PubMed  Google Scholar 

  9. Alexander, D. L., Mital, J., Ward, G. E., Bradley, P. & Boothroyd, J. C. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog. 1, e17 (2005).

    PubMed  PubMed Central  Google Scholar 

  10. Kappe, S. et al. Conservation of a gliding motility and cell invasion machinery in apicomplexan parasites. J. Cell Biol. 147, 937?944 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baum, J. et al. A conserved molecular motor drives cell invasion and gliding motility across malaria lifecycle stages and other apicomplexan parasites. J. Biol. Chem. 281, 5197?5208 (2006).

    CAS  PubMed  Google Scholar 

  12. Stewart, M. J. & Vanderberg, J. P. Malaria sporozoites leave behind trails of circumsporozoite protein during gliding motility. J. Protozool. 35, 389?393 (1988).

    CAS  PubMed  Google Scholar 

  13. Russell, D. G. & Sinden, R. E. The role of the cytoskeleton in the motility of coccidian sporozoites. J. Cell Sci. 50, 345?359 (1981).

    CAS  PubMed  Google Scholar 

  14. Ryning, F. W. & Remington, J. S. Effect of cytochalasin D on Toxoplasma gondii cell entry. Infect. Immun. 20, 739?743 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wetzel, D. M., Schmidt, J., Kuhlenschmidt, M. S., Dubey, J. P. & Sibley, L. D. Gliding motility leads to active cellular invasion by Cryptosporidium parvum sporozoites. Infect. Immun. 73, 5379?5387 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pinder, J. C. et al. Actomyosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion. J. Cell Sci. 111, 1831?1839 (1998).

    CAS  PubMed  Google Scholar 

  17. Dobrowolski, J. M., Carruthers, V. B. & Sibley, L. D. Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol. Microbiol. 26, 163?173 (1997).

    CAS  PubMed  Google Scholar 

  18. Dobrowolski, J. M., Niesman, I. R. & Sibley, L. D. Actin in the parasite Toxoplasma gondii is encoded by a single copy gene, ACT1 and exists primarily in a globular form. Cell Motil. Cytoskeleton 37, 253?262 (1997).

    CAS  PubMed  Google Scholar 

  19. Patron, S. A. et al. Identification and purification of actin from the subpellicular network of Toxoplasma gondii tachyzoites. Int. J. Parasitol. 35, 883?894 (2005).

    Google Scholar 

  20. Trottein, F., Triglia, T. & Cowman, A. F. Molecular cloning of a gene from Plasmodium falciparum that codes for a protein sharing motifs found in adhesive molecules from mammals and plasmodia. Mol. Biochem. Parasitol. 74, 129?141 (1995).

    CAS  PubMed  Google Scholar 

  21. Robson, K. J. et al. A highly conserved amino-acid sequence in thrombospondin, properdin and in proteins from sporozoites and blood stages of a human malaria parasite. Nature 335, 79?82 (1988).

    CAS  PubMed  Google Scholar 

  22. Brossier, F. & Sibley, L. D. Toxoplasma gondii: microneme protein MIC2. Int. J. Biochem. Cell Biol. 37, 2266?2272 (2005).

    CAS  PubMed  Google Scholar 

  23. Spano, F. et al. Molecular cloning and expression analysis of a Cryptosporidium parvum gene encoding a new member of the thrombospondin family. Mol. Biochem. Parasitol. 92, 147?162 (1998).

    CAS  PubMed  Google Scholar 

  24. Jewett, T. J. & Sibley, L. D. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol. Cell. 11, 885?894 (2003).

    CAS  PubMed  Google Scholar 

  25. Buscaglia, C. A., Coppens, I., Hol, W. G. & Nussenzweig, V. Sites of interaction between aldolase and thrombospondin-related anonymous protein in plasmodium. Mol. Biol. Cell 14, 4947?4957 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sultan, A. A. et al. TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites. Cell 90, 511?522 (1997).

    CAS  PubMed  Google Scholar 

  27. Yuda, M., Sakaida, H. & Chinzei, Y. Targeted disruption of the Plasmodium berghei CTRP gene reveals its essential role in malaria infection of the vector mosquito. J. Exp. Med. 190, 1711?1716 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dessens, J. T. et al. CTRP is essential for mosquito infection by malaria ookinetes. EMBO J. 18, 6221?6227 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bergman, L. W. et al. Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. J. Cell Sci. 116, 39?49 (2003).

    CAS  PubMed  Google Scholar 

  30. Bosch, J. et al. Structure of the MTIP?MyoA complex, a key component of the malaria parasite invasion motor. Proc. Natl Acad. Sci. USA 103, 4852?4857 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Green, J. L. et al. The MTIP?myosin A complex in blood stage malaria parasites. J. Mol. Biol. 355, 933?941 (2006).

    CAS  PubMed  Google Scholar 

  32. Jones, M. L., Kitson, E. L. & Rayner, J. C. Plasmodium falciparum erythrocyte invasion: a conserved myosin associated complex. Mol. Biochem. Parasitol. 147, 74?84 (2006).

    CAS  PubMed  Google Scholar 

  33. Gaskins, E. et al. Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J. Cell Biol. 165, 383?393 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Foth, B. J., Goedecke, M. C. & Soldati, D. New insights into myosin evolution and classification. Proc. Natl Acad. Sci. USA 103, 3681?3686 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Herm-Gotz, A. et al. Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO J. 21, 2149?2158 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Meissner, M., Schluter, D. & Soldati, D. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298, 837?840 (2002).

    CAS  PubMed  Google Scholar 

  37. Schmitz, S. et al. Malaria parasite actin filaments are very short. J. Mol. Biol. 349, 113?125 (2005).

    CAS  PubMed  Google Scholar 

  38. Schuler, H., Mueller, A. K. & Matuschewski, K. Unusual properties of Plasmodium falciparum actin: new insights into microfilament dynamics of apicomplexan parasites. FEBS Lett. 579, 655?660 (2005).

    PubMed  Google Scholar 

  39. Sahoo, N., Beatty, W., Heuser, J., Sept, D. & Sibley, L. D. Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite Toxoplasma gondii. Mol. Biol. Cell 17, 895?906 (2005).

    PubMed  Google Scholar 

  40. Revenu, C., Athman, R., Robine, S. & Louvard, D. The co-workers of actin filaments: from cell structures to signals. Nature Rev. Mol. Cell. Biol. 5, 635?646 (2004).

    CAS  Google Scholar 

  41. Bannister, L. H. & Mitchell, G. H. The role of the cytoskeleton in Plasmodium falciparum merozoite biology: an electron-microscopic view. Ann. Trop. Med. Parasitol. 89, 105?111 (1995).

    CAS  PubMed  Google Scholar 

  42. Shaw, M. K. & Tilney, L. G. Induction of an acrosomal process in Toxoplasma gondii: visualization of actin filaments in a protozoan parasite. Proc. Natl Acad. Sci. USA 96, 9095?9099 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Field, S. J. et al. Actin in the merozoite of the malaria parasite, Plasmodium falciparum. Cell Motil. Cytoskeleton 25, 43?48 (1993).

    CAS  PubMed  Google Scholar 

  44. Mizuno, Y. et al. Effect of jasplakinolide on the growth, invasion, and actin cytoskeleton of Plasmodium falciparum. Parasitol. Res. 88, 844?848 (2002).

    PubMed  Google Scholar 

  45. Wetzel, D. M., Hakansson, S., Hu, K., Roos, D. & Sibley, L. D. Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol. Biol. Cell 14, 396?406 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wesseling, J. G., Smits, M. A. & Schoenmakers, J. G. Extremely diverged actin proteins in Plasmodium falciparum. Mol. Biochem. Parasitol. 30, 143?153 (1988).

    CAS  PubMed  Google Scholar 

  47. Kim, K., Gooze, L., Petersen, C., Gut, J. & Nelson, R. G. Isolation, sequence and molecular karyotype analysis of the actin gene of Cryptosporidium parvum. Mol. Biochem. Parasitol. 50, 105?113 (1992).

    CAS  PubMed  Google Scholar 

  48. Wesseling, J. G. et al. Stage-specific expression and genomic organization of the actin genes of the malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 35, 167?176 (1989).

    CAS  PubMed  Google Scholar 

  49. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. Atomic structure of the actin:DNase I complex. Nature 347, 37?44 (1990).

    CAS  PubMed  Google Scholar 

  50. Dominguez, R. Actin-binding proteins ? a unifying hypothesis. Trends Biochem. Sci. 29, 572?578 (2004).

    CAS  PubMed  Google Scholar 

  51. Abrahamsen, M. S. et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304, 441?445 (2004).

    CAS  PubMed  Google Scholar 

  52. Carlton, J. M. et al. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419, 512?519 (2002).

    CAS  PubMed  Google Scholar 

  53. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498?511 (2002).

    CAS  PubMed  Google Scholar 

  54. Pain, A. et al. Genome of the host-cell transforming parasite Theileria annulata compared with T. parva. Science 309, 131?133 (2005).

    CAS  PubMed  Google Scholar 

  55. Gordon, J. L. & Sibley, L. D. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites. BMC Genomics 6, 179 (2005).

    PubMed  PubMed Central  Google Scholar 

  56. Ivens, A. C. et al. The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436?442 (2005).

    PubMed  PubMed Central  Google Scholar 

  57. Baum, B. & Perrimon, N. Spatial control of the actin cytoskeleton in Drosophila epithelial cells. Nature Cell Biol. 3, 883?890 (2001).

    CAS  PubMed  Google Scholar 

  58. Yarovinsky, F. et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626?1629 (2005).

    CAS  PubMed  Google Scholar 

  59. Fetterer, R. H., Miska, K. B., Jenkins, M. C. & Barfield, R. C. A conserved 19-kDa Eimeria tenella antigen is a profilin-like protein. J. Parasitol. 90, 1321?1328 (2004).

    CAS  PubMed  Google Scholar 

  60. Bozdech, Z. et al. Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol. 4, R9 (2003).

    PubMed  PubMed Central  Google Scholar 

  61. Le Roch, K. G. et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503?1508 (2003).

    CAS  PubMed  Google Scholar 

  62. Bamburg, J. R. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol. 15, 185?230 (1999).

    CAS  PubMed  Google Scholar 

  63. Allen, M. L., Dobrowolski, J. M., Muller, H., Sibley, L. D. & Mansour, T. E. Cloning and characterization of actin depolymerizing factor from Toxoplasma gondii. Mol. Biochem. Parasitol. 88, 43?52 (1997).

    CAS  PubMed  Google Scholar 

  64. Schuler, H., Mueller, A. K. & Matuschewski, K. A Plasmodium actin-depolymerizing factor that binds exclusively to actin monomers. Mol. Biol. Cell 16, 4013?4023 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, T. Y., Dermardirossian, C. & Bokoch, G. M. Cofilin phosphatases and regulation of actin dynamics. Curr. Opin. Cell Biol. 18, 26?31 (2006).

    CAS  PubMed  Google Scholar 

  66. Baum, B., Li, W. & Perrimon, N. A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast. Curr. Biol. 10, 964?973 (2000).

    CAS  PubMed  Google Scholar 

  67. Balcer, H. I. et al. Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Curr. Biol. 13, 2159?2169 (2003).

    CAS  PubMed  Google Scholar 

  68. Goodson, H. V. & Hawse, W. F. Molecular evolution of the actin family. J. Cell Sci. 115, 2619?2622 (2002).

    CAS  PubMed  Google Scholar 

  69. Quinlan, M. E., Heuser, J. E., Kerkhoff, E. & Mullins, R. D. Drosophila spire is an actin nucleation factor. Nature 433, 382?388 (2005).

    CAS  PubMed  Google Scholar 

  70. Higgs, H. N. Formin proteins: a domain-based approach. Trends Biochem. Sci. 30, 342?353 (2005).

    CAS  PubMed  Google Scholar 

  71. Tardieux, I. et al. A Plasmodium falciparum novel gene encoding a coronin-like protein which associates with actin filaments. FEBS Lett. 441, 251?256 (1998).

    CAS  PubMed  Google Scholar 

  72. Poupel, O., Boleti, H., Axisa, S., Couture-Tosi, E. & Tardieux, I. Toxofilin, a novel actin-binding protein from Toxoplasma gondii, sequesters actin monomers and caps actin filaments. Mol. Biol. Cell 11, 355?368 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Carruthers, V. B. & Sibley, L. D. Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol. Microbiol. 31, 421?428 (1999).

    CAS  PubMed  Google Scholar 

  74. Lovett, J. L. & Sibley, L. D. Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J. Cell Sci. 116, 3009?3016 (2003).

    CAS  PubMed  Google Scholar 

  75. Ward, P., Equinet, L., Packer, J. & Doerig, C. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5, 79 (2004).

    PubMed  PubMed Central  Google Scholar 

  76. Kieschnick, H., Wakefield, T., Narducci, C. A. & Beckers, C. Toxoplasma gondii attachment to host cells is regulated by a calmodulin-like domain protein kinase. J. Biol. Chem. 276, 12369?12377 (2001).

    CAS  PubMed  Google Scholar 

  77. Siden-Kiamos, I. et al. Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Mol. Microbiol. 60, 1355?1363 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ishino, T., Orito, Y., Chinzei, Y. & Yuda, M. A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Mol. Microbiol. 59, 1175?1184 (2006).

    CAS  PubMed  Google Scholar 

  79. Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y. & Hay, S. I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214?217 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Brossier, F., Jewett, T. J., Sibley, L. D. & Urban, S. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc. Natl Acad. Sci. USA 102, 4146?4151 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dowse, T. J., Pascall, J. C., Brown, K. D. & Soldati, D. Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int. J. Parasitol. 35, 747?756 (2005).

    CAS  PubMed  Google Scholar 

  82. Beltzner, C. C. & Pollard, T. D. Identification of functionally important residues of Arp2/3 complex by analysis of homology models from diverse species. J. Mol. Biol. 336, 551?565 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to many researches in this area who, because of the limits of space, we have not been able to cite directly. We are grateful to T. Nebl and O. Bernard for their comments on the manuscript, to B. Smith for generating the 3D-actin model and the anonymous reviewers for pointing out missing data in our initial analysis. Preliminary genomic data for T. gondii were accessed via http://ToxoDB.org and are provided by The Institute for Genomic Research (supported by a National Institutes of Health grant) and by the Wellcome Trust Sanger Institute. J.B. is funded by a Peter Doherty research fellowship from the National Health and Medical Research Council (NHMRC). A.F.C. is a Howard Hughes International Research Scholar. This work was funded by the NHMRC and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan F. Cowman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Genome Project

Cryptosporidium parvum

Drosophila melanogaster

Leishmania major

Plasmodium falciparum

Plasmodium yoelii

Theileria annulata

Toxoplasma gondii

FURTHER INFORMATION

Wellcome Trust Sanger Institute protozoan genome sequencing projects

ToxoDB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, J., Papenfuss, A., Baum, B. et al. Regulation of apicomplexan actin-based motility. Nat Rev Microbiol 4, 621–628 (2006). https://doi.org/10.1038/nrmicro1465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing