Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial cell individuality and the underlying sources of heterogeneity

Key Points

  • This article explores the mechanisms underlying major examples of microbial cell-to-cell heterogeneity that do not have a genotypic basis, that is, which do not arise from mutation or genome rearrangements. Consequently, bacterial phase variation is not addressed, but certain examples of epigenetically regulated antigenic variation are.

  • Relevant examples of cell-surface antigenic variation include pili switching in Escherichia coli, variant surface glycoprotein expression in trypanosomes, var gene expression in the malaria parasite, and the expression of FLO-gene-encoded glycoproteins in yeast. The regulation in most of these cases is known to have a major epigenetic component.

  • The yeast pathogen Candida undergoes spontaneous, high-frequency phenotypic switches in colony morphology, which might be linked to virulence. Evidence indicates that these switches have an epigenetic basis, but the master regulators have yet to be identified.

  • A small minority of cells in genetically homogeneous microbial populations typically survive otherwise-inhibitory antibiotic treatments. The best-studied example in E. coli arises owing to occasional slow-growing cells in the population, which are thought to be reversibly limited for the function through which the drug normally acts.

  • Individual cells in microbial cultures show variable resistances to stressors. This heterogeneity seems to have a deterministic origin in many cases, where dependencies on cell-cycle stage, cell age and metabolic oscillations have been demonstrated.

  • Variable kinetics of flagellar rotation and reversal dictate individualized swimming behaviours and chemotaxis responses in bacterial cells. The chemotaxis response regulator CheY and the methyltransferase CheR are involved in regulating variability in the chemotaxis response.

  • Competence or not for transformation with DNA, the decision to sporulate, and lysis or lysogeny in bacteriophage λ are major examples of phenotypes that produce binary (all or nothing) distributions in microbial populations. The binary nature typically involves an auto-regulatory feedback mechanism. A stochastic basis for the heterogeneity has been speculated, and some evidence supports this.

Abstract

Single cells in genetically homogeneous microbial cultures exhibit marked phenotypic individuality, a biological phenomenon that is considered to bolster the fitness of populations. Major phenotypes that are characterized by heterogeneity span the breadth of microbiology, in fields ranging from pathogenicity to ecology. The cell cycle, cell ageing and epigenetic regulation are proven drivers of heterogeneity in several of the best-known phenotypic examples. However, the full contribution of factors such as stochastic gene expression is yet to be realized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of histone deacetylation in FLO gene expression and phenotypic switching.
Figure 2: Model depicting cell-cycle-dependent and cell-age-dependent heterogeneity in protein activity among single cells.
Figure 3: The lytic or lysogenic pathways in bacteriophage λ.
Figure 4: Hierarchy of timescales in the operation of key drivers of cellular heterogeneity.

Similar content being viewed by others

References

  1. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183?1186 (2002).

    CAS  PubMed  Google Scholar 

  2. Sumner, E. R., Avery, A. M., Houghton, J. E., Robins, R. A. & Avery, S. V. Cell cycle- and age-dependent activation of Sod1p drives the formation of stress-resistant cell subpopulations within clonal yeast cultures. Mol. Microbiol. 50, 857?870 (2003). Showsthat heterogeneous copper resistance in S. cerevisiae is driven by cell cycle- and age-regulated activity of the Cu,Zn-superoxide dismutase.

    CAS  PubMed  Google Scholar 

  3. Brehm-Stecher, B. F. & Johnson, E. A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538?559 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699?706 (2005).

    CAS  PubMed  Google Scholar 

  5. Booth, I. R. Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78, 19?30 (2002).

    PubMed  Google Scholar 

  6. Sumner, E. R. & Avery, S. V. Phenotypic heterogeneity: differential stress resistance among individual cells of the yeast Saccharomyces cerevisiae. Microbiology 148, 345?351 (2002).

    CAS  PubMed  Google Scholar 

  7. Thattai, M. & van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genetics 167, 523?530 (2004).

    PubMed Central  PubMed  Google Scholar 

  8. Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075?2078 (2005).

    CAS  PubMed  Google Scholar 

  9. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477?483 (2000).

    CAS  PubMed  Google Scholar 

  10. Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J. & Eisen, M. B. Noise minimization in eukaryotic gene expression. PLoS Biol. 2, 834?838 (2004).

    CAS  Google Scholar 

  11. Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811?1814 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet. 6, 451?464 (2005). A comprehensive review on the mechanisms of stochastic gene expression.

    CAS  PubMed  Google Scholar 

  13. Raser, J. M. & O'Shea, E. K. Noise in gene expression: origins, consequences, and control. Science 309, 2010?2013 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Arias, A. M. & Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nature Rev. Genet. 7, 34?44 (2006).

    CAS  PubMed  Google Scholar 

  15. Elowitz, M. Stochastic control of gene expression. Annu. Rev. Microbiol. (in the press).

  16. Davey, H. M. & Kell, D. B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60, 641?696 (1996).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Avery, S. V., Malkapuram, S., Mateus, C. & Babb, K. S. Cu/Zn superoxide dismutase is required for oxytetracycline resistance of Saccharomyces cerevisiae. J. Bacteriol. 182, 76?80 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Anderson, R. P. & Roth, J. R. Tandem genetic duplications in phage and bacteria. Annu. Rev. Microbiol. 31, 473?505 (1977).

    CAS  PubMed  Google Scholar 

  19. Hallett, B. Playing Dr. Jekyll and Mr. Hyde: combined mechanisms of phase variation in bacteria. Curr. Opin. Microbiol. 4, 570?581 (2001).

    Google Scholar 

  20. van der Woude, M. W. & Baumler, A. J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17, 581?611 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Pays, E. Regulation of antigen gene expression in Trypanosoma brucei. Trends Parasitol. 21, 517?520 (2005).

    CAS  PubMed  Google Scholar 

  22. Al-Khedery, B. & Allred, D. R. Antigenic variation in Babesia bovis occurs through segmental gene conversion of the ves multigene family, within a bidirectional locus of active transcription. Mol. Microbiol. 59, 402?414 (2006).

    CAS  PubMed  Google Scholar 

  23. Henderson, I. R., Owen, P. & Nataro, J. P. Molecular switches- the on and off of bacterial phase variation. Mol. Microbiol. 33, 919?932 (1999).

    CAS  PubMed  Google Scholar 

  24. Hernday, A., Braaten, B. & Low, D. The intricate workings of a bacterial epigenetic switch. Adv. Exp. Med. Biol. 547, 83?89 (2004).

    CAS  PubMed  Google Scholar 

  25. Hernday, A. D., Braaten, B. A., Broitman-Maduro, G., Engelberts, P. & Low, D. A. Regulation of the Pap epigenetic switch by CpxAR: phosphorylated CpxR inhibits transition to the phase on state by competition with Lrp. Mol. Cell 16, 537?547 (2004).

    CAS  PubMed  Google Scholar 

  26. Hernday, A. D., Braaten, B. A. & Low, D. A. The mechanism by which DNA adenine methylase and papl activate the pap epigenetic switch. Mol. Cell 12, 947?957 (2003).

    CAS  PubMed  Google Scholar 

  27. Horn, D. & Barry, J. D. The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chrom. Res. 13, 525?533 (2005).

    CAS  PubMed  Google Scholar 

  28. Ralph, S. A. & Scherf, A. The epigenetic control of antigenic variation in Plasmodium falciparum. Curr. Opin. Microbiol. 8, 434?440 (2005). Review that provides a recent model for the epigenetically regulated expression of different var loci in the malaria parasite.

    CAS  PubMed  Google Scholar 

  29. Voss, T. S. et al. A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 439, 1004?1008 (2006).

    CAS  PubMed  Google Scholar 

  30. Halme, A., Bumgarner, S., Styles, C. & Fink, G. R. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116, 405?415 (2004). Demonstrates that the switch in FLO gene expression, which determines variability in pseudohyphal growth or adhesion of S. cerevisiae cells, involves histone-deacetylase-mediated epigenetic regulation.

    CAS  PubMed  Google Scholar 

  31. Verstrepen, K. J. & Klis, F. M. Flocculation, adhesion and biofilm formation in yeasts. Mol. Microbiol. 60, 5?15 (2006).

    CAS  PubMed  Google Scholar 

  32. Slutsky, B., Buffo, J. & Soll, D. R. High-frequency switching of colony morphology in Candida albicans. Science 230, 666?669 (1985).

    CAS  PubMed  Google Scholar 

  33. Slutsky, B. et al. White-opaque transition? a 2nd high-frequency switching system in Candida albicans. J. Bacteriol. 169, 189?197 (1987).

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Brockert, P. J. et al. Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. Infect. Immun. 71, 7109?7118 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Srikantha, T., Zhao, R., Daniels, K., Radke, J. & Soll, D. R. Phenotypic switching in Candida glabrata accompanied by changes in expression of genes with deduced functions in copper detoxification and stress. Euk. Cell 4, 1434?1445 (2005).

    CAS  Google Scholar 

  36. Soll, D. R. Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bioessays 26, 10?20 (2004).

    CAS  PubMed  Google Scholar 

  37. Whiteway, M. & Nantel, A. in The Mycota XIII. Fungal Genomics (ed. Brown, A. J. P.) 149?159 (Springer, Berlin Heidelberg, 2006).

    Google Scholar 

  38. Odds, F. C. Switch of phenotype as an escape mechanism of the intruder. Mycoses 40, 9?12 (1997).

    PubMed  Google Scholar 

  39. Lockhart, S. R. et al. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162, 737?745 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Miller, M. G. & Johnson, A. D. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110, 293?302 (2002).

    CAS  PubMed  Google Scholar 

  41. Tsong, A. E., Miller, M. G., Raisner, R. M. & Johnson, A. D. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115, 389?399 (2003).

    CAS  PubMed  Google Scholar 

  42. Wu, W., Pujol, C., Lockhart, S. R. & Soll, D. R. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans. Genetics 169, 1311?1327 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Klar, A. J. S., Srikantha, T. & Soll, D. R. A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics 158, 919?924 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Srikantha, T., Tsai, L., Daniels, K., Klar, A. J. S. & Soll, D. R. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J. Bacteriol. 183, 4614?4625 (2001). Establishes a link between histone deacetylation and the frequency of switches between colony morphologies in the pathogen C. albicans.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Perez-Martin, J., Uria, J. A. & Johnson, A. D. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J. 18, 2580?2592 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Moyed, H. S. & Bertrand, K. P. HIPA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768?775 (1983).

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Wolfson, J. S., Hooper, D. C., McHugh, G. L., Bozza, M. A. & Swartz, M. N. Mutants of Escherichia-coli K-12 exhibiting reduced killing by both quinolone and β-lactam antimicrobial agents. Antimicrob. Agents Chemother. 34, 1938?1943 (1990).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Harrison, J. J., Turner, R. J. & Ceri, H. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ. Microbiol. 7, 981?994 (2005).

    CAS  PubMed  Google Scholar 

  49. Wiuff, C. et al. Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob. Agents Chemother. 49, 1483?1494 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Spoering, A. L. & Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746?6751 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Lewis, K. Persister cells and the riddle of biofilm survival. Biochem. (Mosc.) 70, 267?274 (2005).

    CAS  Google Scholar 

  52. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622?1625 (2004).

    CAS  PubMed  Google Scholar 

  53. Rinder, H. Hetero-resistance: an under-recognised confounder in diagnosis and therapy? J. Med. Microbiol. 50, 1018?1020 (2001).

    CAS  Google Scholar 

  54. Knobloch, J. K. M., Jager, S., Huck, J., Horstkotte, M. A. & Mack, D. mecA is not involved in the σB-dependent switch of the expression phenotype of methicillin resistance in Staphylococcus epidermidis. Antimicrob. Agents Chemother. 49, 1216?1219 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Marr, K. A., Lyons, C. N., Rustad, T., Bowden, R. A. & White, T. C. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Antimicrob. Agents Chemother. 42, 2584?2589 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Mondon, P. et al. Heteroresistance to fluconazole and voriconazole in Cryptococcus neoformans. Antimicrob. Agents Chemother. 43, 1856?1861 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Cowen, L. E. & Lindquist, S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 2185?2189 (2005).

    CAS  PubMed  Google Scholar 

  58. Lewis, K. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64, 503?514 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13?18 (2004).

    CAS  PubMed  Google Scholar 

  60. Sufya, N., Allison, D. G. & Gilbert, P. Clonal variation in maximum specific growth rate and susceptibility towards antimicrobials. J. Appl. Microbiol. 95, 1261?1267 (2003).

    CAS  PubMed  Google Scholar 

  61. Kussell, E., Kishony, R., Balaban, N. Q. & Leibler, S. Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807?1814 (2005).

    PubMed Central  PubMed  Google Scholar 

  62. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172?8180 (2004). Provides evidence indicating that variability in the activity of cellular functions that are normally corrupted by antibiotics could give rise to occasional persister cells, which might ensure survival of the population.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Korch, S. B., Henderson, T. A. & Hill, T. M. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol. Microbiol. 50, 1199?1213 (2003).

    CAS  PubMed  Google Scholar 

  64. Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730?1737 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Steels, H., James, S. A., Roberts, I. N. & Stratford, M. Sorbic acid resistance: the inoculum effect. Yeast 16, 1173?1183 (2000).

    CAS  PubMed  Google Scholar 

  66. Attfield, P. V., Choi, H. Y., Veal, D. A. & Bell, P. J. L. Heterogeneity of stress gene expression and stress resistance among individual cells of Saccharomyces cerevisiae. Mol. Microbiol. 40, 1000?1008 (2001).

    CAS  PubMed  Google Scholar 

  67. Eaglestone, S. S., Cox, B. S. & Tuite, M. F. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18, 1974?1981 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  68. True, H. L., Berlin, I. & Lindquist, S. L. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431, 184?187 (2004).

    CAS  PubMed  Google Scholar 

  69. Chernoff, Y. O. et al. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol. 35, 865?876 (2000).

    CAS  PubMed  Google Scholar 

  70. Aertsen, A. & Michiels, C. W. Diversify or die: generation of diversity in response to stress. Crit. Rev. Microbiol. 31, 69?78 (2005).

    PubMed  Google Scholar 

  71. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336?342 (1998).

    CAS  PubMed  Google Scholar 

  72. Bergman, A. & Siegal, M. L. Evolutionary capacitance as a general feature of complex gene networks. Nature 424, 549?552 (2003).

    CAS  PubMed  Google Scholar 

  73. Holmstrom, K., Tolker-Nielsen, T. & Molin, S. Physiological states of individual Salmonella typhimurium cells monitored by in situ reverse transcription PCR. J. Bacteriol. 181, 1733?1738 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Plesset, J., Ludwig, J. R., Cox, B. S. & McLaughlin, C. S. Effect of cell-cycle position on thermotolerance in Saccharomyces cerevisiae. J. Bacteriol. 169, 779?784 (1987).

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Jacquet, M., Renault, G., Lallet, S., De Mey, J. & Goldbeter, A. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J. Cell Biol. 161, 497?505 (2003).

    CAS  PubMed  Google Scholar 

  76. Tu, B. P., Kudlicki, A., Rowicka, M. & McKnight, S. L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310, 1152?1158 (2005).

    CAS  PubMed  Google Scholar 

  77. McCool, J. D. et al. Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Mol. Microbiol. 53, 1343?1357 (2004).

    CAS  PubMed  Google Scholar 

  78. Kale, S. P. & Jazwinski, S. M. Differential response to UV stress and DNA damage during the yeast replicative life span. Dev. Genet. 18, 154?160 (1996).

    CAS  PubMed  Google Scholar 

  79. Klevecz, R. R., Bolen, J., Forrest, G. & Murray, D. B. A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc. Natl Acad. Sci. USA 101, 1200?1205 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, J. Q. et al. Cellular stress responses oscillate in synchronization with the ultradian oscillation of energy metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 189, 9?13 (2000).

    CAS  PubMed  Google Scholar 

  81. Tonozuka, H. et al. Analysis of the upstream regulatory region of the GTS1 gene required for its oscillatory expression. J. Biochem. 130, 589?595 (2001).

    CAS  PubMed  Google Scholar 

  82. Murray, D. B., Engelen, F., Lloyd, D. & Kuriyama, H. Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae. Microbiology 145, 2739?2745 (1999).

    CAS  PubMed  Google Scholar 

  83. Flattery-O'Brien, J. A. & Dawes, I. W. Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J. Biol. Chem. 273, 8561?8571 (1998).

    Google Scholar 

  84. Leroy, C., Mann, C. & Marsolier, M. C. Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions. EMBO J. 20, 2896?2906 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Desnues, B. et al. Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep. 4, 400?404 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751?1753 (2003). Shows that oxidatively damaged proteins are preferentially retained in yeast mother cells during division, so creating cell-to-cell heterogeneity in oxidative burden.

    CAS  PubMed  Google Scholar 

  87. Drakulic, T. et al. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5, 1215?1228 (2005).

    CAS  PubMed  Google Scholar 

  88. Avery, S. V., Harwood, J. L. & Lloyd, D. Quantification and characterization of phagocytosis in the soil amoeba Acanthamoeba castellanii by flow-cytometry. Appl. Environ. Microbiol. 61, 1124?1132 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Howlett, N. G. & Avery, S. V. Flow cytometric investigation of heterogeneous copper sensitivity in asynchronously-grown Saccharomyces cerevisiae. FEMS Microbiol. Lett. 176, 379?386 (1999).

    CAS  PubMed  Google Scholar 

  90. Touati, D. Investigating phenotypes resulting from a lack of superoxide dismutase in bacterial null mutants. Methods Enzymol. 349, 145?154 (2002).

    CAS  PubMed  Google Scholar 

  91. Wallace, M. A., Bailey, S., Fukuto, J. M., Valentine, J. S. & Gralla, E. B. Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells: an in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds. Chem. Res. Toxicol. 18, 1279?1286 (2005).

    CAS  PubMed  Google Scholar 

  92. Sumner, E. R. et al. Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151, 1939?1948 (2005).

    CAS  PubMed  Google Scholar 

  93. Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nature Rev. Mol. Cell Biol. 5, 1024?1037 (2004).

    CAS  Google Scholar 

  94. Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911?914 (1999).

    CAS  PubMed  Google Scholar 

  95. Korobkova, E., Emonet, T., Vilar, J. M. G., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioural variability in a single bacterium. Nature 428, 574?578 (2004). Identifies components of the chemotaxis signalling pathway that produce variability in motility behaviour among E. coli cells.

    CAS  PubMed  Google Scholar 

  96. Shi, W. Y. & Zusman, D. R. Fatal attraction. Nature 366, 414?415 (1993).

    CAS  PubMed  Google Scholar 

  97. Spudich, J. L. & Koshland, D. E. Non-genetic individuality: chance in single cell. Nature 262, 467?471 (1976).

    CAS  PubMed  Google Scholar 

  98. Levin, M. D., Morton-Firth, C. J., Abouhamad, W. N., Bourret, R. B. & Bray, D. Origins of individual swimming behavior in bacteria. Biophys. J. 74, 175?181 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Levin, M. D. Noise in gene expression as the source of non-genetic individuality in the chemotactic response of Escherichia coli. FEBS Lett. 550, 135?138 (2003).

    CAS  PubMed  Google Scholar 

  100. Cluzel, P., Surette, M. & Leibler, S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287, 1652?1655 (2000).

    CAS  PubMed  Google Scholar 

  101. Sagi, Y., Khan, S. & Eisenbach, M. Binding of the chemotaxis response regulator CheY to the isolated, intact switch complex of the bacterial flagellar motor: lack of cooperativity. J. Biol. Chem. 278, 25867?25871 (2003).

    CAS  PubMed  Google Scholar 

  102. Barak, R. & Eisenbach, M. Co-regulation of acetylation and phosphorylation of CheY, a response regulator in chemotaxis of Escherichia coli. J. Mol. Biol. 342, 375?381 (2004).

    CAS  PubMed  Google Scholar 

  103. Kollmann, M., Lovdok, L., Bartholome, K., Timmer, J. & Sourjik, V. Design principles of a bacterial signalling network. Nature 438, 504?507 (2005).

    CAS  PubMed  Google Scholar 

  104. Kearns, D. B. & Losick, R. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev. 19, 3083?3094 (2005). Characterizes part of the regulatory mechanism that determines whether individual cells of B. subtilis adopt a motile or sessile type.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Siegele, D. A. & Hu, J. C. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc. Natl Acad. Sci. USA 94, 8168?8172 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tolker-Nielsen, T., Holmstrom, K., Boe, L. & Molin, S. Non-genetic population heterogeneity studied by in situ polymerase chain reaction. Mol. Microbiol. 27, 1099?1105 (1998).

    CAS  PubMed  Google Scholar 

  107. Becskei, A., Seraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20, 2528?2535 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140?148 (2002).

    CAS  PubMed  Google Scholar 

  109. Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714?7719 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Smits, W. K., Kuipers, O. P. & Veening, J.-W. Phenotypic variation in bacteria: the role of feedback regulation. Nature Rev. Microbiol. 4, 259?271 (2006).

    CAS  Google Scholar 

  111. Blake, W. J., Kaern, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633?637 (2003).

    CAS  PubMed  Google Scholar 

  112. Dodd, I. B., Shearwin, K. E. & Egan, J. B. Revisited gene regulation in bacteriophage λ. Curr. Opin. Genet. Dev. 15, 145?152 (2005).

    CAS  PubMed  Google Scholar 

  113. Folkmanis, A., Maltzman, W., Mellon, P., Skalka, A. & Echols H. The essential role of the cro gene in lytic development by bacteriophage λ. Virology 81, 352?362 (1977).

    CAS  PubMed  Google Scholar 

  114. Banuett, F., Hoyt, M. A., McFarlane, L., Echols, H. & Herskowitz, I. hflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage λ cII protein. J. Mol. Biol. 187, 213?224 (1986).

    CAS  PubMed  Google Scholar 

  115. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633?1648 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Baek, K., Svenningsen, S., Eisen, H., Sneppen, K. & Brown, S. Single-cell analysis of λ immunity regulation. J. Mol. Biol. 334, 363?372 (2003).

    CAS  PubMed  Google Scholar 

  117. Maamar, H. & Dubnau, D. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol. 56, 615?624 (2005).

    CAS  PubMed  Google Scholar 

  118. Smits, W. K. et al. Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol. Microbiol. 56, 604?614 (2005). References 117 and 118 show that autostimulation of the ComK transcription factor is required for bistability of competence development in B. subtilis.

    CAS  PubMed  Google Scholar 

  119. Avery, S. V. Cell individuality: the bistability of competence development. Trends Microbiol. 13, 459?462 (2005).

    CAS  PubMed  Google Scholar 

  120. Veening, J. W., Hamoen, L. W. & Kuipers, O. P. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol. Microbiol. 56, 1481?1494 (2005).

    CAS  PubMed  Google Scholar 

  121. Gonzalez-Pastor, J. E., Hobbs, E. C. & Losick, R. Cannibalism by sporulating bacteria. Science 301, 510?513 (2003).

    CAS  PubMed  Google Scholar 

  122. Maughan, H. & Nicholson, W. L. Stochastic processes influence stationary-phase decisions in Bacillus subtilis. J. Bacteriol. 186, 2212?2214 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Fujita, M. & Losick, R. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev. 19, 2236?2244 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M., Elowitz, M. B. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545?550 (2006).

    PubMed  Google Scholar 

  125. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962?1965 (2005).

    CAS  PubMed  Google Scholar 

  126. Bean, J. M., Siggia, E. D. & Cross, F. R. Coherence and timing of cell cycle start examined at single-cell resolution. Mol. Cell 21, 3?14 (2006).

    CAS  PubMed  Google Scholar 

  127. Cai, L. Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358?362 (2006).

    CAS  PubMed  Google Scholar 

  128. Yu, J., Xiao, J., Ren, X. J., Lao, K. Q. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600?1603 (2006).

    CAS  PubMed  Google Scholar 

  129. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69?73 (2002).

    CAS  PubMed  Google Scholar 

  130. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025?1036 (2005).

    CAS  PubMed  Google Scholar 

  131. Volfson, D. et al. Origins of extrinsic variability in eukaryotic gene expression. Nature 439, 861?864 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support of the National Institutes of Health and the Biotechnology and Biological Sciences Research Council for heterogeneity-related work. J. Behnke and E. Louis are thanked for helpful comments on sections of this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Candida albicans

Candida glabrata

Cryptococcus neoformans

Escherichia coli

Mycobacterium tuberculosis

Plasmodium falciparum

Saccharomyces cerevisiae

Salmonella typhimurium

Staphylococcus epidermidis

Trypanosoma brucei

Glossary

Phenotypic heterogeneity

The presence of individual cells in a genetically homogeneous population that exhibit dissimilar phenotypes.

Stochasticity

A fluctuation in transcription or translation, despite constant environmental conditions.

Epigenetic regulation

A regulatory process producing a heritable effect on gene expression that does not involve a change in DNA sequence.

Deterministic switch

A switch that is triggered by mechanisms other than random variation or noise.

Translational bursting

Bursts of protein production from each mRNA transcript, typically occurring at low mRNA abundances.

Telomere silencing

Epigenetic repression of the basal expression of genes located near to telomeres.

Heterochromatin

Usually a tightly packed form of DNA that is mostly genetically inactive.

Euchromatin

The lightly staining regions of the nucleus that generally contain decondensed, transcriptionally active regions of the genome.

Persister cells

Cells that persist following antibiotic treatment in an otherwise-sensitive clonal population.

Hetero-resistance

Heterogeneous resistance to an antimicrobial agent in a genetically homogeneous population of cells.

Toxin?antitoxin module

Paired loci found in the chromosomes of almost all free-living bacteria, and many plasmids and phage genomes. They encode a toxin and its antidote that have been shown to contribute to plasmid stability by a mechanism called post-segregational killing. They are also proposed to function in bacterial programmed cell death or stress physiology.

Two-population model

The existence of two subpopulations within a cell culture, with widely differing gene-expression states or phenotypes.

Respiratory oscillation

Short-term metabolic cycles of oxidation and reduction in Saccharomyces cerevisiae, which become synchronized during continuous culture.

Cu,Zn-superoxide dismutase

A major superoxide scavenging enzyme that functions as an antioxidant and binds zinc and copper.

Epigenetically bistable

An epigenetic mechanism determining that two stable states of cells occur simultaneously in a population.

Binary microbial phenotype

A phenotype that is characterized by only two states (distinct from a graded phenotype).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avery, S. Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4, 577–587 (2006). https://doi.org/10.1038/nrmicro1460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing