Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

N6-methyl-adenine: an epigenetic signal for DNA–protein interactions

Key Points

  • N6-methyl-adenine is a common DNA modification in bacterial genomes, which is catalysed by two classes of DNA adenine methyltransferases: those associated with restriction–modification (R–M) systems and 'solitary' methyltransferases that do not have a restriction-enzyme companion.

  • R–M systems protect bacteria from the invasion of foreign DNA (for example, phages). Each R–M system is made up of a restriction enzyme and a modification enzyme, which both recognize the same DNA target. Some modification enzymes are DNA adenine methyltransferases, whereas others are DNA cytosine methyltransferases.

  • In γ-proteobacteria, methylation of the adenine moiety at GATC sites by the Dam methylase provides signals for chromosome replication, nucleoid organization and segregation, mismatch repair, transposition of insertion elements, phase variation, bacterial conjugation and packaging of phage DNA. Furthermore, Dam methylation is required for virulence in Salmonella, Haemophilus, Yersinia and Vibrio species.

  • In uropathogenic Escherichia coli, phase variation in Pap fimbriae is regulated at the transcriptional level by Dam methylation and the leucine-responsive regulatory protein (Lrp). Synthesis of Prf, S, Afa, K88 and CS31a fimbriae is also regulated by Dam methylation and Lrp. In turn, phase variation in the E. coli Agn43 antigen is regulated by Dam and OxyR.

  • In Salmonella, Dam methylation regulates the expression of genes involved in invasion of epithelial cells (SPI-1 genes), synthesis of fimbrial adhesins (Pef and Std), envelope proteins (Braun lipoprotein), flagella and chemotaxis. Also, Dam methylation is required for bile resistance.

  • Dam methylation regulates conjugal transfer of the Salmonella virulence plasmid and other F-like plasmids.

  • In Caulobacter and other α-proteobacteria, methylation of the adenine moiety at GANTC sites by the CcrM methylase regulates the cell cycle and is essential for viability. Lack of CcrM methylation attenuates virulence in Brucella.

  • DNA adenine methylation is found in the genomes of certain protists and fungi, and might exist in other eukaryotes.

Abstract

N6-methyl-adenine is found in the genomes of bacteria, archaea, protists and fungi. Most bacterial DNA adenine methyltransferases are part of restriction–modification systems. Certain groups of Proteobacteria also harbour solitary DNA adenine methyltransferases that provide signals for DNA–protein interactions. In γ-proteobacteria, Dam methylation regulates chromosome replication, nucleoid segregation, DNA repair, transposition of insertion elements and transcription of specific genes. In Salmonella, Haemophilus, Yersinia and Vibrio species and in pathogenic Escherichia coli, Dam methylation is required for virulence. In α-proteobacteria, CcrM methylation regulates the cell cycle in Caulobacter, Rhizobium and Agrobacterium, and has a role in Brucella abortus infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the roles of N6-methyl-adenine in enteric bacteria.
Figure 2: Dam-directed mismatch repair.
Figure 3: Model for switching from phase OFF to phase ON in the pap operon of uropathogenic Escherichia coli.
Figure 4: Model for regulation of agn43 transcription.
Figure 5: Model for regulation of traJ transcription in the Salmonella virulence plasmid.
Figure 6: Regulation of the Caulobacter cell cycle.

Similar content being viewed by others

References

  1. Cheng, X. Structure and function of DNA methyltransferases. Annu. Rev. Biophys. Biomol. Struct. 24, 293–318 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Barbeyron, T., Kean, K. & Forterre, P. DNA adenine methylation of GATC sequences appeared recently in the Escherichia coli lineage. J. Bacteriol. 160, 586–590 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bickle, T. A. & Kruger, D. H. Biology of DNA restriction. Microbiol. Rev. 57, 434–450 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Marinus, M. G. Methylation of DNA. In Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) 782–791 (ASM Press, Washington DC, 1996). A comprehensive summary of the first two decades of research on Dam methylation.

    Google Scholar 

  5. Reisenauer, A., Kahng, L. S., McCollum, S. & Shapiro, L. Bacterial DNA methylation: a cell cycle regulator? J. Bacteriol. 181, 5135–5139 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Low, D. A., Weyand, N. J. & Mahan, M. J. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect. Immun. 69, 7197–7204 (2001). The only published survey of the roles of Dam methylation in bacterial virulence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Løbner-Olesen, A., Skovgaard, O. & Marinus, M. Dam methylation: coordinating cellular processes. Curr. Op. Microbiol. 8, 154–160 (2005). An update on the roles of Dam methylation in bacteria, including evolutionary aspects.

    Article  CAS  Google Scholar 

  8. Esteller, M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu. Rev. Pharmacol. Toxicol. 45, 629–656 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Engel, J. D. & von Hippel, P. H. Effects of methylation on the stability of nucleic acid conformation: studies at the polymer level. J. Biol. Chem. 253, 928–934 (1978).

    Google Scholar 

  10. Diekmann, S. DNA methylation can enhance or induce DNA curvature. EMBO J. 6, 4213–4217 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Polaczek, P., Kwan, K. & Campbell, J. L. GATC motifs may alter the conformation of DNA depending on sequence context and N6-adenine methylation status: possible implications for DNA–protein recognition. Mol. Gen. Genet. 258, 488–493 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Messer, W. & Noyer-Weidner, M. Timing and targeting: the biological functions of Dam methylation in E. coli. Cell 54, 735–737 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Luria, S. E. & Human, M. L. A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol. 64, 557–569 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bertani, G. & Weigle, J. J. Host controlled variation in bacterial viruses. J. Bacteriol. 65, 113–121 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Arber, W. & Dussoix, D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage λ. J. Mol. Biol. 5, 18–36 (1962).

    Article  CAS  PubMed  Google Scholar 

  16. Lacks, S. & Greenberg, B. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J. Mol. Biol. 114, 153–168 (1977).

    Article  CAS  PubMed  Google Scholar 

  17. Murray, N. E. Immigration control of DNA in bacteria: self versus non-self. Microbiology 148, 3–20 (2002). A comprehensive review on the biological significance of R–M systems.

    Google Scholar 

  18. McKane, M. & Milkman, R. Transduction, restriction and recombination patterns in Escherichia coli. Genetics 139, 35–43 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jeltsch, A. Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems? Gene 317, 13–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi, I. Behavior of restriction–modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29, 3742–3756 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Urig, S. et al. The Escherichia coli Dam DNA methyltransferase modifies DNA in a highly processive reaction. J. Mol. Biol. 319, 1085–1096 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Torreblanca, J. & Casadesús, J. DNA adenine methylase mutants of Salmonella typhimurium and a novel Dam-regulated locus. Genetics 144, 15–26 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Julio, S. M. et al. DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia enterocolitica and Vibrio cholerae. Infect. Immun. 69, 7610–7615 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Egan. E. S. & Waldor M. K. Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell 114, 521–530.

  25. Boye, E., Løbner-Olesen, A. & Skarstad, K. Limiting DNA replication to once and only once. EMBO Rep. 1, 479–483 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Campbell, J. L. & Kleckner, N. The E. coli oriC and the dnaA gene promoter are sequestered from Dam methyltransferase following the passage of the chromosomal replication fork. Cell 62, 967–979 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Lu, M., Campbell, J. L., Boye, E. & Kleckner, N. SeqA: a negative modulator of replication initiation in E. coli. Cell 77, 413–426 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. von Friesleben, U., Rasmussen, K. V. & Schaechter, M. SeqA limits DnaA activity in replication from oriC in Escherichia coli. Mol. Microbiol. 14, 763–772 (1994).

    Article  Google Scholar 

  29. Boye, E., Stokke, T., Kleckner, N. & Skarstad, K. Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins. Proc. Natl Acad. Sci. USA 93, 12206–12211 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Braun, R. W. & Wright, A. DNA methylation differentially enhances the expression of one of the two dnaA promoters in vivo and in vitro. Mol. Gen. Genet. 202, 246–250 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Kücherer, C., Lother, H., Kölling, R., Schauzu, M. A. & Messer, W. Regulation of transcription of the chromosomal dnaA gene of Escherichia coli. Mol. Gen. Genet. 205, 115–121 (1986).

    Article  PubMed  Google Scholar 

  32. Riber, L. & Løbner-Olesen, A. Coordinated replication and sequestration of oriC and dnaA are required for maintaining once-per-cell-cycle initiation in Escherichia coli. J. Bacteriol. 187, 5605–5613 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. d'Alençon, E et al. Isolation of a new hemimethylated DNA binding protein which regulates dnaA gene expression. J. Bacteriol. 185, 2967–2971 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ogden, G. B., Pratt, M. J. & Schaechter, M. The replicative origin of the E. coli chromosome binds to cell membranes only when heminethylated. Cell 54, 121–135 (1988).

    Article  Google Scholar 

  35. Herrick, J. et al. Parental strand recognition of the DNA replication origin by the outer membrane in Escherichia coli. EMBO J. 13, 4695–4703 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bach, T., Krekling, M. A. & Skarstad, K. Excess SeqA prolongs sequestration of oriC and delays nucleoid segregation and cell division. EMBO J. 22, 315–323 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brendler, T., Sawitzke, J., Sergueev, K. & Austin, S. A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation. EMBO J. 19, 6249–6258 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Løbner-Olesen, A., Marinus, M. G. & Hansen, F. G. Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc. Natl Acad. Sci. USA 100, 4672–4677 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. Yamazoe, M., Adachi, S., Kanava, S., Obsumi, K. & Hiraga, S. Sequential binding of SeqA protein to nascent DNA segments at replication forks in synchronized cultures of E. coli. Mol. Microbiol. 55, 289–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Hsieh, T. Molecular mechanisms of DNA mismatch repair. Mutat. Res. 486, 71–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Burdett, V., Baitinger, C., Visvanathan, C., Lovett, S. & Modrich, P. In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair. Proc. Natl Acad. Sci. USA 98, 6765–6770 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Welsch, K. M., Lu, A. L., Clark, S. & Modrich, P. Isolation and characterization of the E. coli mutH product. J. Biol. Chem. 262, 15624–15629 (1987).

    Google Scholar 

  43. Glickman, B. W. & Radman, M. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc. Natl Acad. Sci. USA 77, 1063–1067 (1980).

    Article  CAS  PubMed  Google Scholar 

  44. Fram, R. J., Cusick, P. S., Wilson, J. M. & Marinus, M. G. Mismatch repair of cis-diamminedichloroplatinum(II)-induced DNA damage. Mol. Pharmacol. 28, 51–55 (1985).

    CAS  PubMed  Google Scholar 

  45. Karran, P. & Marinus, M. G. Mismatch correction at O6-methylguanine residues in E. coli DNA. Nature 296, 868–869 (1982).

    Article  CAS  PubMed  Google Scholar 

  46. Prieto, A. I., Ramos-Morales, F. & Casadesús, J. Bile-induced DNA damage in Salmonella enterica. Genetics 168, 1787–1794 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rasmussen, L. J., Løbner-Olesen, A. & Marinus, M. G. Growth-rate-dependent transcription initiation from the dam P2 promoter. Gene 157, 213–215 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Roberts, D., Hoopes, B. C., McClure, W. R. & Kleckner, N. IS 10 transposition is regulated by DNA adenine methylation. Cell 43, 117–130 (1985). A classic, elegant study of DNA–protein interactions regulated by m6A.

    Article  CAS  PubMed  Google Scholar 

  49. Yin, J. C., Krebs, M. P. & Reznikoff, W. S. Effect of Dam methylation on Tn5 transposition. J. Mol. Biol. 199, 35–45 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Dodson, K. W. & Berg, D. E. Factors affecting transposition activity of IS50 and Tn5 ends. Gene 76, 207–213 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. van der Woude, M., Braaten, B. & Low, D. A. Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol. 4, 5–9 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Hernday, A., Krabbe, M., Braaten, B. & Low, D. Self-perpetuating epigenetic pili switches in bacteria. Proc. Natl Acad. Sci. USA 99, 16570–16476 (2002). A detailed description of the molecular mechanisms that control the pap operon, a paradigm among bacterial epigenetic switches.

    Article  CAS  Google Scholar 

  53. Hernday, A. D., Braaten B. A. & Low, D. A. The mechanism by which DNA adenine methylase and PapI activate the Pap epigenetic switch. Mol. Cell 12, 947–957 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. White-Ziegler, C. A, Black, A. M., Eliades, S. H., Young, S. & Porter, K. The N-acetyltransferase RimJ responds to environmental stimuli to repress pap fimbrial transcription in Escherichia coli. J. Bacteriol. 184, 4334–4342 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hernday, A. D., Braaten, B. A., Broitman-Maduro, G., Engelberts, P. & Low, D. A. Regulation of the Pap epigenetic switch by CpxAR: phosphorylated CpxR inhibits transition to the phase ON state by competition with Lrp. Mol. Cell 16, 537–547 (2004).

    CAS  PubMed  Google Scholar 

  56. Nicholson, B. & Low, D. DNA methylation-dependent regulation of pef expression in Salmonella typhimurium. Mol. Microbiol. 35, 728–742 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Waldron, D. E., Owen, P. & Dorman, C. J. Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol. Microbiol. 44, 509–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Haagmans, W. & van der Woude, M. Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol. Microbiol. 35, 877–887 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Henderson, L. R. & Owen, P. The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and OxyR. J. Bacteriol. 181, 2132–2141 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Correnti, J., Munster, M., Chan, T. & van der Woude, M. Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant. Mol. Microbiol. 44, 521–532 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Wallecha, A., Munster, V., Correnti, J., Chan, T. & van der Woude, M. Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J. Bacteriol. 184, 3338–3347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hale, W. B., van der Woude, M. W. & Low, D. A. Analysis of non-methylated GATC sites in the Escherichia coli chromosome and identification of sites that are differentially methylated in response to environmental stimuli. J. Bacteriol. 176, 3438–3441 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van der Woude, M., Hale, W. B. & Low, D. A. Formation of DNA methylation patterns: nonmethylated GATC sequences in gut and pap operons. J. Bacteriol. 180, 5913–5920 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mashhoon, N. et al. Functional characterization of Escherichia coli DNA adenine methyltransferase, a novel target for antibiotics. J. Biol. Chem. 279, 52075–52081 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Torreblanca, J., Marqués, S. & Casadesús, J. Synthesis of FinP RNA by plasmids F and pSLT is regulated by DNA adenine methylation. Genetics 152, 31–45 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Camacho, E. M. & Casadesús, J. Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol. Microbiol. 44, 1589–1598 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Camacho, E. M. et al. Regulation of finP transcription by DNA adenine methylation in the virulence plasmid of Salmonella enterica. J. Bacteriol. 187, 5691–5699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Camacho, E. M. & Casadesús, J. Regulation of traJ transcription in the Salmonella virulence plasmid by strand-specific DNA adenine hemimethylation. Mol. Microbiol. 57, 1700–1718 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Heithoff, D. M., Sinsheimer, R. L., Low, D. A. & Mahan, M. J. An essential role for DNA adenine methylation in bacterial virulence. Science 284, 967–970 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. García-del Portillo, F., Pucciarelli, M. G. & Casadesús, J. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc. Natl Acad. Sci. USA 96, 11578–11583 (1999).

    Article  PubMed  Google Scholar 

  71. Giacomodonato, M. N., Sarnacki, M. H., Caccuri, R. L., Sordelli, D. O. & Cerquetti, M. C. Host response to a dam mutant of Salmonella enterica serovar Enteritidis with a temperature sensitive phenotype. Infect. Immun. 72, 5498–5501 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pucciarelli, M. G., Prieto, A. I., Casadesús, J. & García-del Portillo, F. Envelope instability in DNA adenine methylase mutants of Salmonella enterica. Microbiology 148, 1171–1182 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Heithoff, D. M. et al. Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect. Immun. 69, 6725–6730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Honma, Y., Fernández, R. E. & Maurelli, A. T. A DNA adenine methylase mutant of Shigella flexneri shows no significant attenuation of virulence. Microbiology 150, 1073–1078 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Dueger, E. L., House, J. K., Heithoff, D. M. & Mahan, M. J. Salmonella DNA adenine methylase mutants elicit early and late onset protective immune responses in calves. Vaccine 21, 3249–3258 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Watson, M. E. Jr ., Jarisch, J. & Smith, A. L. Inactivation of deoxyadenosine methyltransferase (dam) attenuates Haemophilus influenzae virulence. Mol. Microbiol. 53, 651–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Taylor, V. L., Titball, R. W. & Oyston, P. C. F. Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects again plague. Microbiology 151, 1919–1926 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Julio, S. M., Heithoff, D. M., Sinsheimer, R. L., Low, D. A. & Mahan, M. J. DNA adenine methylase overproduction in Yersinia pseudotuberculosis alters YopE expression and secretion and host immune responses to infection. Infect. Immun. 70, 1006–1009 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fälker, S., Schmidt, M. A. & Heusipp, G. DNA methylation in Yersinia enterocolitica: role of the DNA adenine methyltransferase in mismatch repair and regulation of virulence factors. Microbiology 151, 2291–2299 (2005).

    Article  PubMed  CAS  Google Scholar 

  80. Chen, L. et al. Alteration of DNA adenine methylase (Dam) activity in Pasteurella multocida causes increased spontaneous mutation frequency and attenuation in mice. Microbiology 149, 2283–2290 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Oshima, T. et al. Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol. Microbiol. 45, 673–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. McClelland, M. Selection against dam methylation sites in the genomes of DNA of enterobacteriophages. J. Mol. Evol. 21, 317–322 (1985).

    Article  CAS  Google Scholar 

  83. Blaisdell, B. E., Campbell, A. M. & Karlin, S. Similarities and dissimilarities of phage genomes. Proc. Natl Acad. Sci. USA 93, 5854–5859 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Sternberg, N., Sauer, B., Hoess, R. & Abremski, K. Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by Dam methylation. J. Mol. Biol. 187, 197–212 (1986).

    Article  CAS  PubMed  Google Scholar 

  85. Hattman, S. & Sun, W. Escherichia coli OxyR modulation of bacteriophage Mu mom expression in dam+ cells can be attributed to its ability to bind Pmom promoter DNA. Nucleic Acids Res. 25, 4385–4388 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Swinton, D. et al. Purification and characterization of the unusual nucleotide, α-N-(9-β-d-2′-deoxyribofuranosylpurin-6-yl)glycinamide, specified by the phage Mu modification function. Proc. Natl Acad. Sci. USA 80, 7400–7404 (1983).

    Article  CAS  PubMed  Google Scholar 

  87. Sternberg, N. & Coulby, J. Cleavage of the bacteriophage P1 packaging site (pac) is regulated by adenine methylation. Proc. Natl Acad. Sci. USA 87, 8070–8074 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Yarmolinski, M. B. & Sternberg, N. Bacteriophage P1. In The Bacteriophages Vol. 1 (ed. Calendar, R.) 782–791 (Plenum Press, New York, 1988).

    Google Scholar 

  89. Zweiger, G., Marczynski, G. & Shapiro, L. A Caulobacter DNA methyltransferase that functions only in the predivisional cell. J. Mol. Biol. 235, 472–485 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Marczynski, G. T. & Shapiro, L. Control of chromosome replication in Caulobacter crescentus. Annu. Rev. Genet. 56, 625–656 (2002). A comprehensive review on the Caulobacter cell cycle, including the roles of CcrM methylation.

    CAS  Google Scholar 

  91. Robertson, G. T. et al. The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages. J. Bacteriol. 182, 3482–3489 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reisenauer, A. & Shapiro, L. DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. EMBO J. 21, 4969–4977 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vanyushin, B. F., Tkacheva, S. G. & Belozersky, A. N. Rare bases in animal DNA. Nature 225, 948–949 (1970).

    Article  CAS  PubMed  Google Scholar 

  94. Hattman, S. DNA-[adenine] methylation in lower eukaryotes. Biochemistry (Mosc.) 70, 550–558 (2005). A recent review on the presence of m6A in eukaryotes, the biological importance of which might have been overlooked for decades.

    Article  CAS  Google Scholar 

  95. Rogers, S. D., Rogers, M. E., Saunders, G. & Holt, G. Isolation of mutants sensitive to 2-aminopurine and alkylating agents and evidence for the role of DNA methylation in Penicillium chrysogenum. Curr. Genet. 10, 557–560 (1986).

    Article  CAS  PubMed  Google Scholar 

  96. Hattman, S., Kenny, C., Berger, L. & Pratt, K. Comparative study of DNA methylation in three unicellular eucaryotes. J. Bacteriol. 135, 1156–1157 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gutiérrez, J. C., Callejas, S., Borniquel, S. & Martin-González, A. DNA methylation in ciliates: implications in differentiation processes. Int. Microbiol. 3, 139–46 (2000).

    PubMed  Google Scholar 

  98. van Etten, J. L. et al. DNA methylation of viruses infecting a eukaryotic Chlorella-like green alga. Nucleic Acids Res. 13, 3471–3478 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, Y., Nelson, M., Nietfeldt, J. W., Burbank, D. E. & Van Etten, J. L. Characterization of Chlorella virus PBCV-1 CviAII restriction and modification system. Nucleic Acids Res. 20, 5351–5356 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nature Rev. Microbiol. 3, 679–687 (2005).

    Article  CAS  Google Scholar 

  101. Lutsenko, E. & Bhagwat, A. S. Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support, and implications. Mutat. Res. 437, 11–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Antonarakis, S. E., Krawczak, M. & Cooper, D. N. Disease-causing mutations in the human genome. Eur. J. Pedriatr. 159, 173–178 (2000).

    Article  Google Scholar 

  103. Poole, A., Penny, D. & Sjoberg, B. M. Confounded cytosine! Tinkering and the evolution of DNA. Nature Rev. Mol. Cell Biol. 2, 147–51 (2001).

    Article  CAS  Google Scholar 

  104. Fedoreyeva, L. I. & Vanyushin, B. F. N6-adenine DNA-methyltransferase in wheat seedlings. FEBS Lett. 514, 305–308 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratories is supported by grants from the Lejeune Foundation (to D.W.), and from the Spanish Ministry of Education and the European Regional Fund (to J.C.). We are grateful to D. Low and F. Antequera for helpful discussions. D.W. thanks A. L. Benabid and F. Berger for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Wion.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

Mu

P1

PSLT

Entrez Genome Project

Agrobacterium tumefaciens

Brucella abortus

Caulobacter crescentus

Chlamydomonas reinhardtii

Escherichia coli

Haemophilus influenzae

Pasteurella multocida

Salmonella enterica

Shigella flexneri

Sinorhizobium meliloti

Vibrio cholerae

Yersinia enterocolitica

Yersinia pseudotuberculosis

FURTHER INFORMATION

Josep Casadesús' homepage

Glossary

Restriction–modification (R–M) system

Bacterial mechanism of defence against invasion by foreign DNA (for example, viruses). They are composed of genes that encode a restriction enzyme and a modification methylase.

Distributive enzyme

Enzyme that dissociates from its substrate after one round of catalysis.

Processive enzyme

Enzyme that performs multiple cycles of catalysis without dissociating from its substrate.

Transition mutation

A nucleotide substitution that changes a purine to a purine (A↔G) or a pyrimidine to a pymiridine (C↔T).

Leucine-responsive regulatory protein

Global regulator of the bacterial cell that regulates gene expression in response to exogenous leucine and other metabolic signals.

Adhesin

Bacterial surface protein that facilitates adhesion to host tissues.

Redox-sensitive regulator

Protein that can exist in two different states in response to the redox potential of the cell.

Conjugal transfer

Transfer of bacterial DNA on cell-to-cell contact.

F sex factor

Plasmid that is present in certain Escherichia coli strains that can transfer chromosomal genes, which led to the discovery of bacterial conjugation.

Translocase

A protein involved in the translocation of proteins across membranes, and in the integration of proteins into the cytoplasmic membrane.

Salmonella pathogenicity island I

(SPI-1). Gene cluster of 40 kb, located on centisome 63 in the Salmonella chromosome. The products of SPI-1 are necessary for invasion of epithelial cells.

M (microfold) cell

Cell type located in the Peyer's patches of the small intestine. M cells are involved in antigen transport and interact with Salmonella and other bacterial pathogens.

Lysogen

Bacterial cell that carries a viral genome in a non-infectious, repressed state.

Rolling-circle replication

Mode of DNA replication that uses a circular DNA molecule as a template to produce concatemers of linear DNA molecules.

Headful mechanism

Introduction of DNA into a bacteriophage capsid in such a way that the length of the packaged DNA molecule is determined by the size of the capsid.

Theta replication

Mode of DNA replication that uses a circular DNA molecule as a template to produce two circular DNA molecules.

Genomic imprinting

Epigenetic mechanism in diploid organisms by which only one allele (maternal or paternal) is expressed.

X-chromosome inactivation

Epigenetic silencing of most genes in one of the two X chromosomes in somatic cells of mammalian females.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wion, D., Casadesús, J. N6-methyl-adenine: an epigenetic signal for DNA–protein interactions. Nat Rev Microbiol 4, 183–192 (2006). https://doi.org/10.1038/nrmicro1350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing