Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting of host-cell ubiquitin and ubiquitin-like pathways by bacterial factors

Key Points

  • This article reviews the relationship between bacteria and host ubiquitin and ubiquitin-like pathways (ULPs). Bacterial virulence factors can mimic the regulatory activities of ULPs and can also interfere with cellular protein sensitivity to ULPs. Due to their sensitivity to ULPs, virulence factors can also modulate their own half-life and localization within the host cell.

  • The Yersinia protein YopJ directly interferes with the ubiquitin-like cellular machinery. YopJ contains a SUMO1 ubiquitin-like protease activity, which might account for its pleiotropic inhibitory effects on cell signalling pathways.

  • Agrobacterium tumefaciens, the causative agent of crown-gall tumours, secretes (via a type IV secretion mechanism) the virulence factor VirF, which is a protein that interacts with homologues of the yeast SKP1 subunit of the SCF complex.

  • Proteasome inhibitors confer macrophage resistance to the lethal factor (LF) toxin of Bacillus anthracis. These inhibitors also confer macrophage resistance to sublethal doses of LF by a phenomenon known as toxin-induced resistance (TIR). TIR cells maintain a steady level of ubiquitylated proteins on cell intoxication.

  • The uropathogenic Escherichia coli (UPEC) toxin CNF1 catalyses the permanent activation of Rho GTPases, which is followed by their ubiquitin-mediated proteasomal degradation. The mechanism of action of this toxin results in efficient UPEC internalization into host cells, intercellular junction disruption and induction of epithelial cell migration.

  • Salmonella injects (via type III secretion) two virulence factors that result in Rac and Cdc42 activation (SopE) and inhibition (SptP). The increased sensitivity of SopE to ubiquitin-mediated proteasomal degradation results in the transient nature of Rac and Cdc42 activation and a reduced inflammatory response.

  • Lumenal prokaryotic microflora actively establish an interaction with host ULPs to limit epithelial inflammatory responses. Inhibition of these inflammatory response is achieved by preventing proteasomal degradation of IκB through the specific inhibition of its ubiquitylati

Abstract

Evidence has emerged that pathogenic or commensal bacteria subvert the ubiquitin and ubiquitin-like pathways (ULPs) during interaction with their hosts. This finding is consistent with ULPs being important in signalling cascades that relay the cellular recognition of pathogens to trigger a genetic response by the host. Subversion of these pathways also contributes to the prevention of host-cell damage by limiting the intracellular activities of bacterial virulence factors. Given the growing implication of ULPs in cell signalling, autophagy and membrane trafficking, there is little doubt that further examples of direct or indirect interactions between bacterial factors and ULPs will be documented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ubiquitin-transfer reaction and targeting to the proteasome.
Figure 2: Involvement of ULPs in Toll-like receptor activity.
Figure 3: Interaction of bacterial factors with host ubiquitin-like pathways.
Figure 4: Transient activation of Rac by CNF1 toxin and the SopE virulence factor.

Similar content being viewed by others

References

  1. Yamaizumi, M., Mekada, E., Uchida, T. & Okada, Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15, 245–250 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Finley, D., Ciechanover, A. & Varshavsky, A. Ubiquitin as a central cellular regulator. Cell 116, S29–S32 (2004). This review provides an historic view of the discovery of ubiquitin through to the conclusion that ubiquitylation represents a non-degradative way of regulating protein activity and localization.

    Article  CAS  PubMed  Google Scholar 

  3. Weissman, A. M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell Biol. 2, 169–178 (2001).

    Article  CAS  Google Scholar 

  4. Ciechanover, A. & Ben-Saadon, R. B. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14, 103–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Varshavsky, A. The N-end rule and regulation of apoptosis. Nature Cell Biol. 5, 373–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Silverman, N. & Maniatis, T. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15, 2321–2342 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Huang, D. T., Walden, H., Duda, D. & Schulman, B. A. Ubiquitin-like protein activation. Oncogene 23, 1958–1971 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz, D. C. & Hochstrasser, M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28, 321–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol. 19, 141–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, L. & Chen, Z. J. The novel functions of ubiquitination in signalling. Curr. Opin. Cell Biol. 16, 119–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκBα ubiquitination. Science 289, 1560–1563 (2000). Shows that the lumenal prokaryotic microflora actively establish an interaction with host UPS to limit the epithelial inflammatory responses.

    Article  CAS  PubMed  Google Scholar 

  12. Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000). Reports that YopJ directly interferes with the ubiquitin-like cellular machinery and has endoprotease activity that is responsible for the cleavage of SUMO1-conjugated proteins. YopJ ubiquitin-like protease activity probably accounts for its pleiotropic inhibitory effects on both MAPKs and NF-κB signalling pathways.

    Article  CAS  PubMed  Google Scholar 

  13. Doye, A. et al. CNF1 exploits the ubiquitin–proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111, 553–564 (2002). Describes the ubiquitin-mediated proteasomal degradation of Rho GTPases by CNF1.

    Article  CAS  PubMed  Google Scholar 

  14. Kubori, T. & Galan, J. E. Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115, 333–342 (2003). Shows that the transient nature of the activation of the two antagonist factors injected by Salmonella into host cells is due to the differential sensitivity of these factors to UPS, and that the half-lives of both factors are determined by their secretion and translocation domains.

    Article  CAS  PubMed  Google Scholar 

  15. Salles, I. I., Tucker, A. E., Voth, D. E. & Ballard, J. D. Toxin-induced resistance in Bacillus anthracis lethal toxin-treated macrophages. Proc. Natl Acad. Sci. USA 100, 12426–12431 (2003). Details the effects of sublethal doses of LF of Bacillus anthracis on macrophage-induced cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jackson, P. K. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10, 429–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Kirkegaard, K., Taylor, M. P. & Jackson, W. T. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nature Rev. Microbiol. 2, 301–314 (2004). Describes recent progress in the study of molecular cascades that regulate cellular autophagy and provides several examples of interactions between microorganisms and autophagosomal structures.

    Article  CAS  Google Scholar 

  19. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Greer, S. F., Zika, E., Conti, B., Zhu, X. S. & Ting, J. P. Enhancement of CIITA transcriptional function by ubiquitin. Nature Immunol. 4, 1074–1082 (2003).

    Article  CAS  Google Scholar 

  21. Goldberg, A. L., Cascio, P., Saric, T. & Rock, K. L. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol. Immunol. 39, 147–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Janssens, S. & Beyaert, R. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem. Sci. 27, 474–482 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D. V. TRAF6 is a signal transducer for interleukin-1. Nature 383, 443–446 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Janssens, S. & Beyaert, R. Role of Toll-like receptors in pathogen recognition. Clin. Microbiol. Rev. 16, 637–646 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Takeda, K. & Akira, S. TLR signaling pathways. Semin. Immunol. 16, 3–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Cao, Z., Henzel, W. J. & Gao, X. IRAK: a kinase associated with the interleukin-1 receptor. Science 271, 1128–1131 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Swantek, J. L., Tsen, M. F., Cobb, M. H. & Thomas, J. A. IL-1 receptor-associated kinase modulates host responsiveness to endotoxin. J. Immunol. 164, 4301–4306 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Li, L., Cousart, S., Hu, J. & McCall, C. E. Characterization of interleukin-1 receptor-associated kinase in normal and endotoxin-tolerant cells. J. Biol. Chem. 275, 23340–23345 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Jiang, Z., Ninomiya-Tsuji, J., Qian, Y., Matsumoto, K. & Li, X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol. Cell Biol. 22, 7158–7167 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun, L., Deng, L., Ea, C. K., Xia, Z. P. & Chen, Z. J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Haglund K., Di Fiore, P. P. & Dikic, I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598–603 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Chuang, T. H. & Ulevitch, R. J. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nature Immunol. 5, 495–502 (2004).

    Article  CAS  Google Scholar 

  37. Zhang, G. & Ghosh, S. Negative regulation of Toll-like receptor-mediated signaling by Tollip. J. Biol. Chem. 277, 7059–7065 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Yamakami, M., Yoshimori, T. & Yokosawa, H. Tom1, a VHS domain-containing protein, interacts with tollip, ubiquitin, and clathrin. J. Biol. Chem. 278, 52865–52872 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Booth, J. W., Kim, M. K., Jankowski, A., Schreiber, A. D. & Grinstein, S. Contrasting requirements for ubiquitylation during Fc receptor-mediated endocytosis and phagocytosis. EMBO J. 21, 251–258 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Read, M. A. et al. Nedd8 modification of cul-1 activates SCFβTrCP-dependent ubiquitination of IκBα. Mol. Cell Biol. 20, 2326–2333 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Zheng, N. et al. Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Kawakami, T. et al. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J. 20, 4003–4012 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Furukawa, M., Zhang, Y., McCarville, J., Ohta, T. & Xiong, Y. The CUL1 C-terminal sequence and ROC1 are required for efficient nuclear accumulation, NEDD8 modification, and ubiquitin ligase activity of CUL1. Mol. Cell Biol. 20, 8185–8197 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boyer, L. et al. Rac GTPase instructs nuclear factor-κB activation by conveying the SCF complex and IκBα to the ruffling membranes. Mol. Biol. Cell 15, 1124–1133 (2004). Provides an example of spatial regulation by the GTPase Rac of CUL1 that has been modified by the NEDD8 ubiquitin-like molecule.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schrammeijer, B. et al. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr. Biol. 11, 258–262 (2001). This study shows that the A. tumefaciens VirF injected-factor interacts with both ASK1 and -2. Together with the finding that VirF has an F-box-homologous domain, this indicates that VirF might act as a bona fide 'ubiquitin ligase'.

    Article  CAS  PubMed  Google Scholar 

  47. Cornelis, G. R. The Yersinia Ysc–Yop 'type III' weaponry. Nature Rev. Mol. Cell Biol. 3, 742–752 (2002).

    Article  CAS  Google Scholar 

  48. Monack, D. M., Mecsas, J., Ghori, N. & Falkow S. Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc. Natl Acad. Sci. USA 94, 10385–10390 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boland, A. & Cornelis, G. R. Role of YopP in suppression of tumor necrosis factor-α release by macrophages during Yersinia infection. Infect. Immun. 66, 1878–1884 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bohn, E. et al. Gene expression patterns of epithelial cells modulated by pathogenicity factors of Yersinia enterocolitica. Cell. Microbiol. 6, 129–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Orth, K. et al. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285, 1920–1923 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Orth, K. Function of the Yersinia effector YopJ. Curr. Opin. Microbiol. 5, 38–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Hardt, W. D. & Galan, J. E. A secreted Salmonella protein with homology to an avirulence determinant of plant pathogenic bacteria. Proc. Natl Acad. Sci. USA 94, 9887–9892 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Regensburg-Tuink, A. J. & Hooykaas, P. J. Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363, 69–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Tzfira, T. & Citovsky, V. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol. 12, 121–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Huibregtse, J. M., Scheffner, M. & Howley, P. M. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol. Cell Biol. 13, 4918–4927 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boname, J. M. & Stevenson, P. G. MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15, 627–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Coscoy, L., Sanchez, D. J. & Ganem, D. A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J. Cell Biol. 155, 1265–1273 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang, G. & Leppla, S. H. Proteasome activity is required for anthrax lethal toxin to kill macrophages. Infect. Immun. 67, 3055–3060 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Collier, R. J. & Young, J. A. Anthrax toxin. Annu. Rev. Cell Dev. Biol. 19, 45–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Duesbery, N. S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998). This paper reports that B. anthracis LF protease activity cleaves the N-terminus of MAPK kinases 1 and 2, which leads to MAPKK1 inactivation and inhibits their downstream signalling pathways.

    Article  CAS  PubMed  Google Scholar 

  62. Park, J. M., Greten, F. R., Li, Z. W. & Karin, M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297, 2048–2051 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Barbieri, J. T., Riese, M. J. & Aktories, K. Bacterial toxins that modify the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 18, 315–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Boquet, P. & Lemichez, E. Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? Trends Cell Biol. 13, 238–246 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Nobes, C. D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Coso, O. A. et al. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137–1146 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Perona, R. et al. Activation of the nuclear factor-κB by Rho, Cdc42, and Rac-1 proteins. Genes Dev. 11, 463–475 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Munro, P. et al. Activation and proteasomal degradation of Rho GTPases by CNF1 elicit a controlled inflammatory response. J. Biol. Chem. 279, 35849–35857 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Arbibe, L. et al. Toll-like receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway. Nature Immunol. 1, 533–540 (2000).

    Article  CAS  Google Scholar 

  72. Caron, E. & Hall, A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Lemichez, E., Flatau, G., Bruzzone, M., Boquet, P. & Gauthier, M. Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol. Microbiol. 24, 1061–1070 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Landraud, L., Gauthier, M., Fosse, T. & Boquet, P. Frequency of Escherichia coli strains producing the cytotoxic necrotizing factor (CNF1) in nosocomial urinary tract infections. Lett. Appl. Microbiol. 30, 213–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Contamin, S. et al. The p21 Rho-activating toxin cytotoxic necrotizing factor 1 is endocytosed by a clathrin-independent mechanism and enters the cytosol by an acidic-dependent membrane translocation step. Mol. Biol. Cell. 11, 1775–1787 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Flatau, G. et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387, 729–733 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Schmidt, G. et al. Gln63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387, 725–729 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Lerm, M., Pop, M., Fritz, G., Aktories, K. & Schmidt, G. Proteasomal degradation of cytotoxic necrotizing factor 1-activated Rac. Infect. Immun. 70, 4053–4058 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, H. R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Cossart, P. Molecular and cellular basis of the infection by Listeria monocytogenes: an overview. Int. J. Med. Microbiol. 291, 401–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Marquis, H., Goldfine, H. & Portnoy, D. A. Proteolytic pathways of activation and degradation of a bacterial phospholipase C during intracellular infection by Listeria monocytogenes. J. Cell Biol. 137, 1381–1392 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Perrin, A. J., Jiang, X., Birmingham, C. L., So, N. S. & Brumell, J. H. Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr. Biol. 14, 806–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Goetz, M. et al. Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc. Natl Acad. Sci. USA 98, 12221–12226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou, D & Galan, J. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect. 3, 1293–1298 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Fu, Y. & Galan, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Hooper, L. V. et al. Molecular analysis of commensal host–microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 23, 229–241 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Boquet for fruitful discussions and advice during the writing of the manuscript. We thank P. Munro and M. M. Mhlanga for critical reading of the manuscript. We apologize to those colleagues whose important contributions could not be cited owing to space restrictions. Our laboratory is supported by funding from the Institut National de la Santé et de la Recherche Médicale (INSERM), and by grants from the Association pour la Recherche sur le Cancer and the Ligue Nationale Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Lemichez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

SwissProt

Cdc42

CUL1

IL8

MCP1

MEK1

MEK2

MKK6

NEDD8

ROC1

SKP1

SMURF1

SUMO1

TAB1

TAB2

TAK1

TLR2

TLR4

TOLLIP

TOM1

TRAF6

UBC13

UEV1A

Ulp1

YopJ

YopP

FURTHER INFORMATION

INSERM

KEGG Pathways on CGAP

The Cancer Genome Anatomy Project (CGAP) Pathway Information

Glossary

PROTEASOME

A large multisubunit protease complex that selectively degrades polyubiquitylated proteins. It is composed of a 20S catalytic complex that is associated with two 19S regulatory particles.

N-END RULE

The ubiquitin-dependent pathway by which target proteins are degraded through their destabilizing N-terminal residues.

TOLL-LIKE RECEPTORS

(TLRs). Type I receptors with leucine-rich extracellular repeats that are involved in pathogen-associated molecular-pattern recognition. Signal transduction by TLRs involves interactions between their cytoplasmic Toll/IL-1 receptor resistance domain (TIR) and TIR-containing adaptors, such as MyD88 and TIRAP.

RHO GTPASES

Proteins that hydrolyse GTP into GDP. These proteins oscillate between a GTP-bound form, which binds and activates effectors, and a GDP-bound inactive form.

MEMBRANE RUFFLES

Plasma-membrane protrusions that form waves and are driven by actin polymerization, which is controlled by Rac.

AB TOXINS

Proteins that are secreted by pathogenic bacteria, such as the diphtheria toxin. These bacterial toxins bind to cells, are endocytosed and inject their catalytic domain into the cytosol, which causes modifications of important components of the host-cellular machinery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, L., Lemichez, E. Targeting of host-cell ubiquitin and ubiquitin-like pathways by bacterial factors. Nat Rev Microbiol 2, 779–788 (2004). https://doi.org/10.1038/nrmicro1005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing