Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Lymphocyte fate specification as a deterministic but highly plastic process

Abstract

The cellular progeny of a clonally selected lymphocyte must execute function. However, their function must often occur in more than one way, in more than one place and at more than one time. Experimental evidence supports the view that a single activated lymphocyte can produce a variety of cellular descendants. The mechanisms that are responsible for generating diversity among the progeny of a single lymphocyte remain a subject of lively controversy. Some groups have suggested stochastic mechanisms that are analogous to the diversification of the antigen receptor repertoire. We suggest that the complexity of lymphocyte fates in space and time can be derived from a single naive lymphocyte using the principles of cell diversification that are common in developmental and regenerative biology, including (but not limited to) asymmetric cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical models to generate lymphocyte cell fate diversity in the immune response.
Figure 2: Cell fate diversification from a single lymphocyte as a deterministic but plastic process versus a stochastic process.

Similar content being viewed by others

References

  1. Plumlee, C. R., Sheridan, B. S., Cicek, B. B. & Lefrancois, L. Environmental cues dictate the fate of individual CD8+ T cells responding to infection. Immunity 39, 347–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Tubo, N. J. et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153, 785–796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stemberger, C. et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27, 985–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Gerlach, C. et al. One naive T cell, multiple fates in CD8+ T cell differentiation. J. Exp. Med. 207, 1235–1246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerlach, C. et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340, 635–639 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Buchholz, V. R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 340, 630–635 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Hodgkin, P. D., Lee, J. H. & Lyons, A. B. B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184, 277–281 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Jacob, J. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J. Exp. Med. 176, 679–687 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Duffy, K. R. et al. Activation-induced B cell fates are selected by intracellular stochastic competition. Science 335, 338–341 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Burnet, F. M. A modification of Jerne's theory of antibody production using the concept of clonal selection. Austral. J. Sci. 20, 67–69 (1957).

    Google Scholar 

  13. Ciocca, M. L., Barnett, B. E., Burkhardt, J. K., Chang, J. T. & Reiner, S. L. Cutting edge: Asymmetric memory T cell division in response to rechallenge. J. Immunol. 188, 4145–4148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arsenio, J. et al. Early specification of CD8+ T lymphocyte fates during adaptive immunity revealed by single-cell gene-expression analyses. Nature Immunol. 15, 365–372 (2014).

    Article  CAS  Google Scholar 

  15. Barnett, B. E. et al. Asymmetric B cell division in the germinal center reaction. Science 335, 342–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Catron, D. M., Rusch, L. K., Hataye, J., Itano, A. A. & Jenkins, M. K. CD4+ T cells that enter the draining lymph nodes after antigen injection participate in the primary response and become central-memory cells. J. Exp. Med. 203, 1045–1054 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang, J. T. et al. Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity 34, 492–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. King, C. G. et al. T cell affinity regulates asymmetric division, effector cell differentiation, and tissue pathology. Immunity 37, 709–720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oliaro, J. et al. Asymmetric cell division of T cells upon antigen presentation uses multiple conserved mechanisms. J. Immunol. 185, 367–375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thaunat, O. et al. Asymmetric segregation of polarized antigen on B cell division shapes presentation capacity. Science 335, 475–479 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Kelso, A., Groves, P., Troutt, A. B. & Francis, K. Evidence for the stochastic acquisition of cytokine profile by CD4+ T cells activated in a T helper type 2-like response in vivo. Eur. J. Immunol. 25, 1168–1175 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Obar, J. J., Khanna, K. M. & Lefrancois, L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28, 859–869 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hawkins, E. D. et al. Regulation of asymmetric cell division and polarity by Scribble is not required for humoral immunity. Nature Commun. 4, 1801 (2013).

    Article  Google Scholar 

  26. Pepper, M., Pagan, A. J., Igyarto, B. Z., Taylor, J. J. & Jenkins, M. K. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35, 583–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kitano, M. et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34, 961–972 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Kerfoot, S. M. et al. Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity 34, 947–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuseff, M. I. et al. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity 35, 361–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Azar, G. A., Lemaitre, F., Robey, E. A. & Bousso, P. Subcellular dynamics of T cell immunological synapses and kinapses in lymph nodes. Proc. Natl Acad. Sci. USA 107, 3675–3680 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Friedman, R. S., Beemiller, P., Sorensen, C. M., Jacobelli, J. & Krummel, M. F. Real-time analysis of T cell receptors in naive cells in vitro and in vivo reveals flexibility in synapse and signaling dynamics. J. Exp. Med. 207, 2733–2749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Melichar, H. J. et al. Quantifying subcellular distribution of fluorescent fusion proteins in cells migrating within tissues. Immunol. Cell. Biol. 89, 549–557 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Yuseff, M. I., Pierobon, P., Reversat, A. & Lennon-Dumenil, A. M. How B cells capture, process and present antigens: a crucial role for cell polarity. Nature Rev. Immunol. 13, 475–486 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to members of their laboratory for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Reiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiner, S., Adams, W. Lymphocyte fate specification as a deterministic but highly plastic process. Nat Rev Immunol 14, 699–704 (2014). https://doi.org/10.1038/nri3734

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing