Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles

Key Points

  • Invariant natural killer T (iNKT) cells are a subset of T cells that express a semi-invariant T-cell receptor (TCR) (composed of Vα14–Jα18 and Vβ8.2 in mice, and Vα24–Jα18 and Vβ11 in humans), together with markers of NK cells. These cells are specific for glycolipid antigens that are presented by the MHC-class-I-like molecule CD1d.

  • A distinguishing feature of iNKT cells, compared with conventional T cells and other T cells that are sometimes referred to as NKT cells, is their reactivity with the antitumor agent α-galactosylceramide (α-GalCer), a natural product isolated from a marine sponge.

  • In vivo activation of iNKT cells with α-GalCer results in a dynamic response that is characterized by rapid secretion of interleukin-4 and interferon-γ, transient downregulation of cell-surface TCR, clonal expansion and homeostatic contraction. Activation of iNKT cells in this manner also leads to the transactivation of various cells of the innate and adaptive immune systems and, in most mouse strains, to immune deviation to a T helper 2 (TH2) response.

  • The immunomodulatory activities of α-GalCer have been exploited for the treatment of various diseases, including autoimmune diseases. Specifically, α-GalCer and related glycolipids prevent disease in experimental models of type 1 diabetes, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and Graves' thyroiditis. However, treatment efficacy was influenced by various parameters, including the dose, route, timing and frequency of injections, and the particular mouse strain that was used, which in some cases paradoxically resulted in disease exacerbation.

  • Available evidence indicates that α-GalCer prevents autoimmunity by promoting TH2 responses. However, recruitment of tolerogenic dendritic cells and induction of regulatory T cells might also have a role.

  • Although preclinical studies have raised considerable enthusiasm for developing α-GalCer as an immunotherapy for autoimmune diseases, there are several concerns about using α-GalCer therapy for humans. In particular, in some preclinical studies, α-GalCer exacerbated rather than prevented disease, indicating that treatment with α-GalCer might accelerate disease in some individuals. Furthermore, treatment with α-GalCer has several adverse side-effects in mice, including liver toxicity and exacerbation of atherosclerosis, raising additional safety concerns.

  • Some of the obstacles associated with human α-GalCer therapy might be overcome by using structural analogues of α-GalCer (such as the compound known as OCH) by co-administration of reagents that modulate iNKT-cell responses or by co-administration with other therapeutics for autoimmune diseases.

  • Translation of the preclinical studies of α-GalCer to the treatment of human autoimmunity also requires a better understanding of the immunological properties of human iNKT cells and their responses to stimulation with glycolipids.

Abstract

Autoimmune responses are normally kept in check by immune-tolerance mechanisms, which include regulatory T cells. In recent years, research has focused on the role of a subset of natural killer T (NKT) cells — invariant NKT (iNKT) cells, which are a population of glycolipid-reactive regulatory T cells — in controlling autoimmune responses. Because iNKT cells strongly react with a marine-sponge-derived glycolipid, α-galactosylceramide (α-GalCer), it has been possible to specifically target and track these cells. As I discuss here, although preclinical studies have shown considerable promise for the development of treatment with α-GalCer as a therapeutic modality for autoimmune diseases, several obstacles need to be overcome before moving α-GalCer therapy from the bench to the bedside.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of the ligand-specificity of iNKT cells compared with conventional T cells.
Figure 2: Structure of α-GalCer and related glycolipids.
Figure 3: The in vivo response of iNKT cells to stimulation with α-GalCer.
Figure 4: Capacity of α-GalCer-activated iNKT cells to modulate innate and adaptive immunity.
Figure 5: Proposed mechanism for the capacity of α-GalCer to modulate TH1-dominant autoimmunity.

Similar content being viewed by others

References

  1. Roncarolo, M. & Levings, M. K. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr. Opin. Immunol. 12, 676–683 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Shevach, E. M. Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nature Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  Google Scholar 

  5. Taniguchi, M., Harada, M., Kojo, S., Nakayama, T. & Wakao, H. The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21, 483–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Brigl, M. & Brenner, M. B. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22, 817–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Godfrey, D. I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Godfrey, D. I., MacDonald, H. R., Kronenberg, M., Smyth, M. J. & Van Kaer, L. NKT cells: what's in a name? Nature Rev. Immunol. 4, 231–237 (2004).

    Article  CAS  Google Scholar 

  10. Dellabona, P., Padovan, E., Casorati, G., Brockhaus, M. & Lanzavecchia, A. An invariant Vα 24-JαQ/Vβ11 T cell receptor is expressed in all individuals by clonally expanded CD48 cells. J. Exp. Med. 180, 1171–1176 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Porcelli, S., Yockey, C. E., Brenner, M. B. & Balk, S. P. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 αβ T cells demonstrates preferential use of several V β genes and an invariant TCR α chain. J. Exp. Med. 178, 1–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Motsinger, A. et al. Identification and simian immunodeficiency virus infection of CD1d-restricted macaque natural killer T cells. J. Virol. 77, 8153–8158 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsuura, A. et al. NKT cells in the rat: organ-specific distribution of NK T cells expressing distinct Vα14 chains. J. Immunol. 164, 3140–3148 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Shao, H., Van Kaer, L., Sun, S. L., Kaplan, H. J. & Sun, D. Infiltration of the inflamed eye by NKT cells in a rat model of experimental autoimmune uveitis. J. Autoimmun. 21, 37–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997). This study was the first to show that CD1d-restricted iNKT cells react with α-GalCer.

    Article  CAS  PubMed  Google Scholar 

  17. Schofield, L. et al. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283, 225–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Gumperz, J. E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Fischer, K. et al. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl Acad. Sci. USA 101, 10685–10690 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, D. Y., Segal, N. H., Sidobre, S., Kronenberg, M. & Chapman, P. B. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198, 173–181 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stanic, A. K. et al. Defective presentation of the CD1d1-restricted natural Vα14Jα18 NKT lymphocyte antigen caused by β-D-glucosylceramide synthase deficiency. Proc. Natl Acad. Sci. USA 100, 1849–1854 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Amprey, J. L. et al. A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J. Exp. Med. 200, 895–904 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gumperz, J. E., Miyake, S., Yamamura, T. & Brenner, M. B. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 195, 625–636 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ho, L. P., Urban, B. C., Jones, L., Ogg, G. S. & McMichael, A. J. CD4CD8αα subset of CD1d-restricted NKT cells controls T cell expansion. J. Immunol. 172, 7350–7358 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Stetson, D. B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Leite-De-Moraes, M. C. et al. IL-4-producing NK T cells are biased towards IFN-γ production by IL-12. Influence of the microenvironment on the functional capacities of NK T cells. Eur. J. Immunol. 28, 1507–1515 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Gourdy, P. et al. Relevance of sexual dimorphism to regulatory T cells: estradiol promotes IFN-γ production by invariant natural killer T cells. Blood 21 Sep 2004 (doi:10.1182/blood-2004-07-2819).

  33. Arase, H., Arase, N. & Saito, T. Interferon γ production by natural killer (NK) cells and NK1.1+ T cells upon NKR-P1 cross-linking. J. Exp. Med. 183, 2391–2396 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Hameg, A. et al. IL-7 up-regulates IL-4 production by splenic NK1.1+ and NK1.1 MHC class I-like/CD1-dependent CD4+ T cells. J. Immunol. 162, 7067–7074 (1999).

    CAS  PubMed  Google Scholar 

  35. Leite-de-Moraes, M. C. et al. IL-18 enhances IL-4 production by ligand-activated NKT lymphocytes: a pro-TH2 effect of IL-18 exerted through NKT cells. J. Immunol. 166, 945–951 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Pal, E. et al. Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of Vα14 NK T cells. J. Immunol. 166, 662–668 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Hayakawa, Y. et al. Differential regulation of TH1 and TH2 functions of NKT cells by CD28 and CD40 costimulatory pathways. J. Immunol. 166, 6012–6018 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Hayakawa, Y., Berzins, S. P., Crowe, N. Y., Godfrey, D. I. & Smyth, M. J. Antigen-induced tolerance by intrathymic modulation of self-recognizing inhibitory receptors. Nature Immunol. 5, 590–596 (2004). This paper shows that chronic treatment with α-GalCer induces depletion of peripheral iNKT cells in mice and induces the emergence of thymus-derived iNKT cells with an anergic phenotype.

    Article  CAS  Google Scholar 

  39. Matsuda, J. L. et al. Mouse Vα14i natural killer T cells are resistant to cytokine polarization in vivo. Proc. Natl Acad. Sci. USA 100, 8395–8400 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Joyce, S. CD1d and natural T cells: how their properties jump-start the immune system. Cell. Mol. Life Sci. 58, 442–469 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Van Kaer, L. Regulation of immune responses by CD1d-restricted natural killer T cells. Immunol. Res. 30, 139–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Bendelac, A., Bonneville, M. & Kearney, J. F. Autoreactivity by design: innate B and T lymphocytes. Nature Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  Google Scholar 

  43. Gombert, J. M. et al. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur. J. Immunol. 26, 2989–2998 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Baxter, A. G., Kinder, S. J., Hammond, K. J., Scollay, R. & Godfrey, D. I. Association between αβTCR+CD4CD8 T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46, 572–582 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Mieza, M. A. et al. Selective reduction of Vα14+ NK T cells associated with disease development in autoimmune-prone mice. J. Immunol. 156, 4035–4040 (1996).

    CAS  PubMed  Google Scholar 

  46. Yoshimoto, T., Bendelac, A., Hu-Li, J. & Paul, W. E. Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin 4. Proc. Natl Acad. Sci. USA 92, 11931–11934 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carnaud, C., Gombert, J., Donnars, O., Garchon, H. & Herbelin, A. Protection against diabetes and improved NK/NKT cell performance in NOD.NK1.1 mice congenic at the NK complex. J. Immunol. 166, 2404–2411 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Esteban, L. M. et al. Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J. Immunol. 171, 2873–2878 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Matsuki, N. et al. Genetic dissection of Vα14Jα18 natural T cell number and function in autoimmune-prone mice. J. Immunol. 170, 5429–5437 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Shi, F. D. et al. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc. Natl Acad. Sci. USA 98, 6777–6782 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, B., Geng, Y. B. & Wang, C. R. CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med. 194, 313–320 (2001). This paper and references 76, 81 and 82 were the first studies to show the efficacy of α-GalCer for the treatment of autoimmunity, using the NOD mouse model of type 1 diabetes.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Teige, A. et al. CD1-dependent regulation of chronic central nervous system inflammation in experimental autoimmune encephalomyelitis. J. Immunol. 172, 186–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, J. Q. et al. CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice. Eur. J. Immunol. 34, 1723–1732 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14–Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mars, L. T. et al. Vα14–Jα281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J. Immunol. 168, 6007–6011 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Hammond, K. J. & Godfrey, D. I. NKT cells: potential targets for autoimmune disease therapy? Tissue Antigens 59, 353–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Wilson, S. B. & Delovitch, T. L. Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nature Rev. Immunol. 3, 211–222 (2003).

    Article  CAS  Google Scholar 

  58. Chatenoud, L. Do NKT cells control autoimmunity? J. Clin. Invest. 110, 793–748 (2002).

    Article  Google Scholar 

  59. Natori, T., Koezuka, Y. & Higa, T. Agelasphins, novel α-galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett. 34, 5591–5592 (1993).

    Article  CAS  Google Scholar 

  60. Morita, M. et al. Structure–activity relationship of α-galactosylceramides against B16-bearing mice. J. Med. Chem. 38, 2176–2187 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Spada, F. M., Koezuka, Y. & Porcelli, S. A. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med. 188, 1529–1534 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eberl, G. & MacDonald, H. R. Rapid death and regeneration of NKT cells in anti-CD3ε- or IL-12-treated mice: a major role for bone marrow in NKT cell homeostasis. Immunity 9, 345–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Eberl, G. & MacDonald, H. R. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur. J. Immunol. 30, 985–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Wilson, M. T. et al. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl Acad. Sci. USA 100, 10913–10918 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Crowe, N. Y. et al. Glycolipid antigen drives rapid expansion and sustained cytokine production by NKT cells. J. Immunol. 171, 4020–4027 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Harada, M. et al. Down-regulation of the invariant Vα14 antigen receptor in NKT cells upon activation. Int. Immunol. 16, 241–247 (2004). References 65–67 show that the in vivo disappearance of iNKT cells in response to stimulation with α-GalCer results from the downregulation of the surface receptors that are used to identify this population of cells. References 65 and 66 also show that iNKT cells are capable of substantial in vivo clonal expansion.

    Article  CAS  PubMed  Google Scholar 

  68. Parekh, V. V. et al. Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α- and β-anomeric glycolipids. J. Immunol. 173, 3693–3706 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Giaccone, G. et al. A phase I study of natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res. 8, 3702–3709 (2002).

    CAS  PubMed  Google Scholar 

  70. Nieda, M. et al. Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103, 383–389 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Singh, N. et al. Activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a TH2 phenotype. J. Immunol. 163, 2373–2377 (1999). This paper, together with reference 79, shows that α-GalCer promotes T H 2 responses in C57BL/6 mice.

    CAS  PubMed  Google Scholar 

  72. Carnaud, C. et al. Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650 (1999).

    CAS  PubMed  Google Scholar 

  73. Diao, H. et al. Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity 21, 539–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Nakagawa, R. et al. Antitumor activity of α-galactosylceramide, KRN7000, in mice with the melanoma B16 hepatic metastasis and immunohistological study of tumor infiltrating cells. Oncol. Res. 12, 51–58 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Kitamura, H. et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med. 189, 1121–1128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Naumov, Y. N. et al. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc. Natl Acad. Sci. USA 98, 13838–13843 (2001). This paper indicates a role for tolerogenic DCs in disease protection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kitamura, H. et al. α-Galactosylceramide induces early B-cell activation through IL-4 production by NKT cells. Cell. Immunol. 199, 37–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Nishimura, T. et al. The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int. Immunol. 12, 987–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Burdin, N., Brossay, L. & Kronenberg, M. Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards TH2 cytokine synthesis. Eur. J. Immunol. 29, 2014–2025 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Nagayama, Y., Watanabe, K., Niwa, M., McLachlan, S. M. & Rapoport, B. Schistosoma mansoni and α-galactosylceramide: prophylactic effect of TH1 immune suppression in a mouse model of Graves' hyperthyroidism. J. Immunol. 173, 2167–2173 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Hong, S. et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med. 7, 1052–1056 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Sharif, S. et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nature Med. 7, 1057–1062 (2001). References 81 and 82 provide evidence for a role of deviation to a T H 2 response in disease protection.

    Article  CAS  PubMed  Google Scholar 

  83. Fujii, S., Shimizu, K., Kronenberg, M. & Steinman, R. M. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nature Immunol. 3, 867–874 (2002).

    Article  CAS  Google Scholar 

  84. Yang, J. -Q. et al. Repeated α-galactosylceramide administration results in expansion of Vα14 NKT cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J. Immunol. 171, 4439–4446 (2003). This study shows that α-GalCer ameliorates inflammatory dermatitis but not SLE nephritis in the MRL- lpr/lpr mouse model of SLE. Repeated administration of α-GalCer to these animals induced the clonal expansion of iNKT cells, indicating that CD95–CD95-ligand interactions have a role in the depletion of peripheral iNKT cells after chronic treatment of CD95-sufficient animals with α-GalCer.

    Article  CAS  PubMed  Google Scholar 

  85. Stanic, A. K. et al. Another view of T cell antigen recognition: co-operative engagement of glycolipid antigens by Vα14Jα18 natural T cell receptor. J. Immunol. 171, 4539–4551 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Cantu, C., Benlagha, K., Savage, P. B., Bendelac, A. & Teyton, L. The paradox of immune molecular recognition of α-galactosylceramide: low affinity, low specificity for CD1d, high affinity for αβ TCRs. J. Immunol. 170, 4673–4682 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Sidobre, S. et al. The Vα14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J. Immunol. 169, 1340–1348 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001). This paper, together with references 98, 99 and 100, shows that α-GalCer and its structural analogue OCH can prevent EAE, in a mechanism that involves deviation to a T H 2 response.

    Article  CAS  PubMed  Google Scholar 

  89. Oki, S., Chiba, A., Yamamura, T. & Miyake, S. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest. 113, 1631–1640 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goff, R. D. et al. Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc. 126, 13602–13603 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Schmieg, J., Yang, G., Franck, R. W. & Tsuji, M. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand α-galactosylceramide. J. Exp. Med. 198, 1631–1641 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ortaldo, J. R. et al. Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J. Immunol. 172, 943–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Wilson, M. T., Singh, A. K. & Van Kaer, L. Immunotherapy with ligands of natural killer T cells. Trends Mol. Med. 8, 225–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Delovitch, T. L. & Singh, B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7, 727–738 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Yasunami, R. & Bach, J. F. Anti-suppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice. Eur. J. Immunol. 18, 481–484 (1988).

    Article  CAS  PubMed  Google Scholar 

  96. Mi, Q. -S., Ly, D., Zucker, P., McGarry, M. & Delovitch, T. L. Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T cells. Diabetes 53, 1303–1310 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Bollyky, P. L. & Wilson, S. B. CD1d-restricted T-cell subsets and dendritic cell function in autoimmunity. Immunol. Cell. Biol. 82, 307–314 (2004).

    Article  PubMed  Google Scholar 

  98. Jahng, A. W. et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1789–1799 (2001). This paper, together with reference 100, shows that the protocol for administering α-GalCer can considerably impact the treatment outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Singh, A. K. et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1801–1811 (2001). This paper shows that the efficacy of treatment with α-GalCer is genetically controlled.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Furlan, R. et al. Activation of invariant NKT cells by α-GalCer administration protects mice from MOG35–55 induced EAE: critical roles for administration route and IFN-γ. Eur. J. Immunol. 33, 1830–1838 (2003). This paper indicates an unexpected role for IFN-γ in disease protection.

    Article  CAS  PubMed  Google Scholar 

  101. Chiba, A. et al. Suppression of collagen-induced arthritis by natural killer T cell activation with OCH, a sphingosine-truncated analog of α-galactosylceramide. Arthritis Rheum. 50, 305–313 (2004). This paper shows that α-GalCer moderately protects C57BL/6 mice, but not SJL/J mice, against the development of collagen-induced arthritis. It also shows that the α-GalCer analogue OCH, which elicits a T H 2-biased cytokine response from iNKT cells, can prevent disease in both C57BL/6 and SJL/J mice.

    Article  CAS  PubMed  Google Scholar 

  102. Zeng, D., Liu, Y., Sidobre, S., Kronenberg, M. & Strober, S. Activation of natural killer T cells in NZB/W mice induces TH1-type immune responses exacerbating lupus. J. Clin. Invest. 112, 1211–1222 (2003). This paper indicates that α-GalCer exacerbates disease in the NZB/W mouse model of SLE when treatment is initiated in adult animals. Disease exacerbation in these animals was associated with the unusual induction of T H 1 responses by α-GalCer, instead of the T H 2 response that is induced in most other mouse strains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saubermann, L. J. et al. Activation of natural killer T cells by α-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterol. 119, 119–128 (2000).

    Article  CAS  Google Scholar 

  104. Powrie, F. & Coffman, R. L. Cytokine regulation of T-cell function: potential for therapeutic intervention. Immunol. Today 14, 270–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Pearson, C. I. & McDevitt, H. O. Redirecting TH1 and TH2 responses in autoimmune disease. Curr. Top. Microbiol. Immunol. 238, 79–122 (1999).

    CAS  PubMed  Google Scholar 

  106. Li, L. et al. IL-4 utilizes an alternative receptor to drive apoptosis of TH1 cells and skews neonatal immunity toward TH2. Immunity 20, 429–440 (2004).

    Article  PubMed  Google Scholar 

  107. Beaudoin, L., Laloux, V., Novak, J., Lucas, B. & Lehuen, A. NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic β cells. Immunity 17, 725–736 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Mars, L. T., Novak, J., Liblau, R. S. & Lehuen, A. Therapeutic manipulation of iNKT cells in autoimmunity: modes of action and potential risks. Trends Immunol. 25, 471–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Bocek, P., Foucras, G. & Paul, W. E. Interferon γ enhances both in vitro and in vivo priming of CD4+ T cells for IL-4 production. J. Exp. Med. 199, 1619–1630 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Serreze, D. V. et al. TH1 to TH2 cytokine shifts in nonobese diabetic mice: sometimes an outcome, rather than the cause, of diabetes resistance elicited by immunostimulation. J. Immunol. 166, 1352–1359 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Osman, Y. et al. Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosylceramide. Eur. J. Immunol. 30, 1919–1928 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Ito, K. et al. Involvement of decidual Vα14 NKT cells in abortion. Proc. Natl Acad. Sci. USA 97, 740–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bilenki, L., Yang, J., Fan, Y., Wang, S. & Yang, X. Natural killer T cells contribute to airway eosinophilic inflammation induced by ragweed through enhanced IL-4 and eotaxin production. Eur. J. Immunol. 34, 345–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Tupin, E. et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med. 199, 417–422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nakai, Y. et al. Natural killer T cells accelerate atherogenesis in mice. Blood 104, 2051–2059 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Major, A. S. et al. Quantitative and qualitative differences in pro-atherogenic NKT cells in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 24, 2351–2357 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Janeway, C. A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nature Immunol. 5, 597–605 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I apologize to those whose work I failed to cite. I thank the members of my laboratory and many colleagues and collaborators, in particular S. Joyce, R. Singh, C.-R. Wang, D. Unutmaz and A. Major for helpful discussions and sharing unpublished data, and S. Joyce for critical reading of the manuscript. My laboratory is supported by the National Institutes of Health (United States).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CD1d

CD95

granulocyte/macrophage colony-stimulating factor

IFN-γ

IL-2

IL-4

IL-10

IL-12

IL-13

NK1.1

TGF-β

tumour-necrosis factor

FURTHER INFORMATION

Luc Van Kaer's laboratory

Glossary

T HELPER 1

(TH1). Antigen-activated, conventional CD4+ T cells can differentiate into TH1 cells, which produce interleukin-2 (IL-2), interferon-γ and tumour-necrosis factor, or TH2 cells, which produce IL-4, IL-5, IL-6, IL-10 and IL-13.

OESTRADIOL

A member of the oestrogen family of steroid hormones. It is the most potent female hormone that occurs naturally. It is produced by the ovaries and is responsible for the growth of the breast, the development of secondary sexual characteristics and the maturation of long bones. Oestradiol also impacts on immune responses, including the profile of cytokines produced by invariant natural killer T cells.

'DANGER' SIGNALS

Agents that alert the immune system to danger and thereby promote the generation of adaptive immune responses. Danger signals can be associated with microbial invaders (exogenous danger signals) or produced by damaged cells (endogenous danger signals).

NON-OBESE DIABETIC MICE

(NOD mice). Mice of the NOD strain spontaneously develop a form of autoimmunity that closely resembles human type 1 diabetes. Prevalence of disease is higher in female than male animals and can be accelerated by treatment with cyclophosphamide, which is thought to deplete regulatory T cells.

OSTEOPONTIN

An extracellular-matrix protein that supports adhesion and migration of inflammatory cells. It has recently been recognized as an immunoregulatory T-helper-1-type cytokine.

ACTIVATION-INDUCED CELL DEATH

(AICD). A form of regulated cell death, which is induced during lymphocyte activation. During a normal immune response, most antigen-specific lymphocytes undergo AICD.

α-GALCER–CD1d TETRAMERS

Tetrameric forms of CD1d molecules bound to α-galactosylceramide (α-GalCer), which have sufficient affinity for the T-cell receptor of invariant natural killer T cells to allow the detection of these cells by flow cytometry.

INSULITIS

An infiltration of lymphocytes into pancreatic islets during the progression of type 1 diabetes. Insulitis can be innocuous or destructive.

EXPERIMENTAL ALLERGIC (AUTOIMMUNE) ENCEPHALOMYELITIS

(EAE). An experimental model of human multiple sclerosis that is induced in susceptible animals by immunization with central-nervous-system antigens. EAE can be induced in various mammalian species, including mice. Several different mouse models have been established that develop either self-limiting (monophasic) or recurring (relapsing–remitting) disease.

COLLAGEN-INDUCED ARTHRITIS

(CIA). An experimental model of rheumatoid arthritis. Arthritis is induced by immunization of susceptible animals with collagen type II.

SYSTEMIC LUPUS ERYTHEMATOSUS

(SLE). A systemic autoimmune disease that is characterized by multi-organ failure and autoantibodies specific for nuclear antigens. Both hereditary and induced mouse models of SLE are available.

COLITIS

An inflammatory disease of the colon. In humans, colitis is most commonly classified as ulcerative colitis or Crohn's disease, two inflammatory bowel diseases that have unknown aetiology. Various hereditary and induced mouse models of human colitis have been developed.

GRAVES' THYROIDITIS

Graves' disease, the most common form of hyperthyroidism in humans results from activating antibodies specific for the thyroid-stimulating-hormone receptor (TSHR). In mouse models of Graves' thyroiditis, disease is induced by immunization with the TSHR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaer, L. α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 5, 31–42 (2005). https://doi.org/10.1038/nri1531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1531

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing