Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Landmark
  • Published:

The road to Toll

Abstract

A few years ago, it would have been difficult to argue that elucidating the mechanisms of disease resistance in the fruit fly, Drosophila melanogaster, would provide new insights into mammalian immunity. Yet the finding that the Drosophila protein Toll mediates immune responses to fungal infection had a pioneering role in the identification of Toll-like receptors as essential regulators of mammalian host defence, and it fundamentally altered our understanding of innate immunity. In this Landmark article, I describe the thought processes and the experimental steps that defined Toll as a key regulator of Drosophila immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Toll and IL-1 receptors.
Figure 2: Toll mutants are highly susceptible to fungal infection.
Figure 3: The Toll and Imd pathways.

Similar content being viewed by others

References

  1. Steiner, H., Hultmark, D., Engstrom, A., Bennich, H. & Boman, H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246–248 (1981).

    CAS  PubMed  Google Scholar 

  2. Hultmark, D. et al. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 2, 571–576 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Samakovlis, C., Kimbrell, D., Kylsten, P., Engstrom, A. & Hultmark, D. The immune response in Drosophila: pattern of Cecropin expression and biological activity. EMBO J. 9, 2969–2976 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kylsten, P., Samakovlis, C. & Hultmark, D. The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J. 9, 217–224 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wicker, C. et al. Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the Diptericin family of immune peptides. J. Biol. Chem. 265, 22493–22498 (1990).

    CAS  PubMed  Google Scholar 

  6. Sun, S. C., Lindstrom, I., Lee, J. Y. & Faye, I. Structure and expression of the attacin genes in Hyalophora cecropia. Eur. J. Biochem. 196, 247–254 (1991).

    CAS  PubMed  Google Scholar 

  7. Kappler, C. et al. Insect immunity. Two 17bp repeats nesting a κB-related sequence confer inducibility to the Diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J. 12, 1561–1568 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Engstrom, Y. et al. κB-like motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol. 232, 327–333 (1993).

    CAS  PubMed  Google Scholar 

  9. Li, Q. & Verma, I. M. NF-κB regulation in the immune system. Nature Rev. Immunol. 2, 725–734 (2002).

    CAS  Google Scholar 

  10. Gay, N. & Keith, F. Drosophila Toll and IL-1 receptor. Nature 351, 355–356 (1991).

    CAS  PubMed  Google Scholar 

  11. Schneider, D. S., Hudson, K. L., Lin, T. Y. & Anderson, K. V. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal–ventral polarity in the Drosophila embryo. Genes Dev. 5, 797–807 (1991).

    CAS  PubMed  Google Scholar 

  12. Heguy, A., Baldari, C. T., Macchia, G., Telford, J. L. & Melli, M. Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila Toll protein are essential for IL-1R signal transduction. J. Biol. Chem. 267, 2605–2609 (1992).

    CAS  PubMed  Google Scholar 

  13. Nusslein-Volhard, C. in Determinants of Spatial Organization (eds Subtelny, S. & Konigsberg, I. R.) 185–211 (Academic, New York, 1979).

    Google Scholar 

  14. Steward, R. Dorsal, an embryonic polarity gene in Drosophila is homologous to the vertebrate proto-oncogene c-rel. Science 238, 692–694 (1987).

    CAS  PubMed  Google Scholar 

  15. Ip, Y. T., Kraut, R., Levine, M. & Rushlow, C. A. The Dorsal morphogen is a sequence-specific DNA-binding protein that interacts with a long-range repression element in Drosophila. Cell 64, 439–446 (1991).

    CAS  PubMed  Google Scholar 

  16. Thisse, C., Perrin-Schmitt, F., Stoetzel, C. & Thisse, B. Sequence-specific transactivation of the Drosophila twist gene by the dorsal gene product. Cell 65, 1191–1201 (1991).

    CAS  PubMed  Google Scholar 

  17. Pan, D. J., Huang, J. D. & Courey, A. J. Functional analysis of the Drosophila twist promoter reveals a dorsal-binding ventral activator region. Genes Dev. 5, 1892–1901 (1991).

    CAS  PubMed  Google Scholar 

  18. Gerttula, S., Jin, Y. S. & Anderson, K. V. Zygotic expression and activity of the Drosophila Toll gene, a gene required maternally for embryonic dorsal–ventral pattern formation. Genetics 119, 123–133 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Letsou, A., Alexander, S., Orth, K. & Wasserman, S. A. Genetic and molecular characterization of tube, a Drosophila gene maternally required for embryonic dorsoventral polarity. Proc. Natl Acad. Sci. USA 88, 810–814 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hecht, P. M. & Anderson, K. V. Genetic characterization of tube and pelle, genes required for signaling between Toll and Dorsal in the specification of the dorsal–ventral pattern of the Drosophila embryo. Genetics 135, 405–417 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Reichhart, J. M. et al. Expression and nuclear translocation of the rel/NF-κB-related morphogen Dorsal during the immune response of Drosophila. C. R. Acad. Sci. III, Sci. Vie 316, 1218–1224 (1993).

    CAS  Google Scholar 

  22. Lemaitre, B. et al. Functional analysis and regulation of nuclear import of Dorsal during the immune response in Drosophila. EMBO J. 14, 536–545 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ip, Y. et al. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75, 753–763 (1993).

    CAS  PubMed  Google Scholar 

  24. Rosetto, M., Engstrom, Y., Baldari, C. T., Telford, J. L. & Hultmark, D. Signals from the IL-1 receptor homolog, Toll, can activate an immune response in a Drosophila hemocyte cell line. Biochem. Biophys. Res. Commun. 209, 111–116 (1995).

    CAS  PubMed  Google Scholar 

  25. Fehlbaum, P. et al. Insect immunity: septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 269, 33159–33163 (1994).

    CAS  PubMed  Google Scholar 

  26. Rizki, T., Rizki, R. & Grell, E. A mutant affecting the crystal cells in Drosophila melanogaster. Rouxs Arch. Dev. Biol. 188, 91–99 (1980).

    CAS  Google Scholar 

  27. Söderhäll, K. & Cerenius, L. Role of prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23–28 (1998).

    PubMed  Google Scholar 

  28. Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl Acad. Sci. USA 92, 9465–9469 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Corbo, J. C. & Levine, M. Characterization of an immunodeficiency mutant in Drosophila. Mech. Dev. 55, 211–220 (1996).

    CAS  PubMed  Google Scholar 

  30. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. & Hoffmann, J. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    CAS  PubMed  Google Scholar 

  31. Chasan, R. & Anderson, K. V. The role of Easter, an apparent serine protease, in organizing the dorsal–ventral pattern of the Drosophila embryo. Cell 56, 391–400 (1989).

    CAS  PubMed  Google Scholar 

  32. Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13, 792–797 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569–580 (2000).

    CAS  PubMed  Google Scholar 

  34. Lemaitre, B., Reichhart, J. & Hoffmann, J. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614–14619 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dushay, M., Asling, B. & Hultmark, D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl Acad. Sci. USA 93, 10343–10347 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4, 827–837 (1999).

    CAS  PubMed  Google Scholar 

  37. Wu, L. P. & Anderson, K. V. Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392, 93–97 (1998).

    CAS  PubMed  Google Scholar 

  38. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep. 1, 353–358 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nature Immunol. 1, 342–347 (2000).

    CAS  Google Scholar 

  40. Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10, 781–784 (2000).

    CAS  PubMed  Google Scholar 

  41. Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15, 104–110 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Choe, K. M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K. V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362 (2002).

    CAS  PubMed  Google Scholar 

  44. Silverman, N. et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14, 2461–2471 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Stöven, S., Ando, I., Kadalayil, L., Engström, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347–352 (2000).

    PubMed  PubMed Central  Google Scholar 

  46. Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1, 503–514 (2001).

    CAS  PubMed  Google Scholar 

  47. Leulier, F., Vidal, S., Saigo, K., Ueda, R. & Lemaitre, B. Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr. Biol. 12, 996–1000 (2002).

    CAS  PubMed  Google Scholar 

  48. Naitza, S. et al. The Drosophila immune defense against Gram-negative infection requires the death protein dFADD. Immunity 17, 575–581 (2002).

    CAS  PubMed  Google Scholar 

  49. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    CAS  PubMed  Google Scholar 

  50. Akira, S. Mammalian Toll-like receptors. Curr. Opin. Immunol. 15, 5–11 (2003).

    CAS  PubMed  Google Scholar 

  51. Beutler, B., Hoebe, K., Du, X. & Ulevitch, R. J. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukoc. Biol. 74, 479–485 (2003).

    CAS  PubMed  Google Scholar 

  52. Weber, A. N. et al. Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nature Immunol. 4, 794–800 (2003).

    CAS  Google Scholar 

  53. Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA 97, 10520–10525 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Imler, J. L. & Hoffmann, J. A. Toll receptors in Drosophila: a family of molecules regulating development and immunity. Curr. Top. Microbiol. Immunol. 270, 63–79 (2002).

    CAS  PubMed  Google Scholar 

  55. Ooi, J. Y., Yagi, Y., Hu, X. & Ip, Y. T. The Drosophila Toll-9 activates a constitutive antimicrobial defense. EMBO Rep. 3, 82–87 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Michel, T., Reichhart, J. M., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756–759 (2001).

    CAS  PubMed  Google Scholar 

  57. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R. A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002).

    CAS  PubMed  Google Scholar 

  58. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    CAS  PubMed  Google Scholar 

  59. Gobert, V. et al. Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302, 2126–2130 (2003).

    CAS  PubMed  Google Scholar 

  60. Pili-Floury, S. et al. In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J. Biol. Chem. 279, 12848–12853 (2004).

    CAS  PubMed  Google Scholar 

  61. Yoshida, H., Kinoshita, K. & Ashida, M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271, 13854–13860 (1996).

    CAS  PubMed  Google Scholar 

  62. Lee, W., Lee, J., Kravchenko, V., Ulevitch, R. & Brey, P. Purification and molecular cloning of an inducible Gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Natl Acad. Sci. USA 93, 7888–7893 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ochiai, M. & Ashida, M. A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. J. Biol. Chem. 274, 11854–11858 (1999).

    CAS  PubMed  Google Scholar 

  64. Kang, D., Liu, G., Lundstrom, A., Gelius, E. & Steiner, H. A peptidoglycan regonition protein in innate immunity conserved from insects to humans. Proc. Natl Acad. Sci. USA 95, 10078–10082 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunol. 4, 478–484 (2003).

    CAS  Google Scholar 

  66. Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Anderson, K. V. & Nusslein-Volhard, C. in Pattern Formation: A Primer in Developmental Biology (eds Malacinski, G. M. & Bryant, S. V.) 269–289 (Macmillan, New York, 1984).

    Google Scholar 

  68. Anderson, K. V., Bokla, L. & Nusslein-Volhard, C. Establishment of dorsal–ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42, 791–798 (1985).

    CAS  PubMed  Google Scholar 

  69. Anderson, K. V., Jurgens, G. & Nusslein-Volhard, C. Establishment of dorsal–ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42, 779–789 (1985).

    CAS  PubMed  Google Scholar 

  70. Hashimoto, C., Hudson, K. & Anderson, K. The Toll gene of Drosophila, required for dorsal–ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52, 269–279 (1988).

    CAS  PubMed  Google Scholar 

  71. Hashimoto, C., Kim, D. R., Weiss, L. A., Miller, J. W. & Morisato, D. Spatial regulation of developmental signaling by a serpin. Dev. Cell 5, 945–950 (2003).

    CAS  PubMed  Google Scholar 

  72. Ligoxygakis, P., Roth, S. & Reichhart, J. M. A serpin regulates dorsal–ventral axis formation in the Drosophila embryo. Curr. Biol. 13, 2097–2102 (2003).

    CAS  PubMed  Google Scholar 

  73. Kambris, Z. et al. DmMyD88 controls dorsoventral patterning of the Drosophila embryo. EMBO Rep. 4, 64–69 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Charatsi, I., Luschnig, S., Bartoszewski, S., Nusslein-Volhard, C. & Moussian, B. Krapfen/dMyd88 is required for the establishment of dorsoventral pattern in the Drosophila embryo. Mech. Dev. 120, 219–226 (2003).

    CAS  PubMed  Google Scholar 

  75. Belvin, M. P. & Anderson, K. V. A conserved signaling pathway: the Drosophila Toll–Dorsal pathway. Annu. Rev. Cell Dev. Biol. 12, 393–416 (1996).

    CAS  PubMed  Google Scholar 

  76. Qiu, P., Pan, P. C. & Govind, S. A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125, 1909–1920 (1998).

    CAS  PubMed  Google Scholar 

  77. Hultmark, D. Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12–19 (2003).

    CAS  PubMed  Google Scholar 

  78. Ferrandon, D., Imler, J. L. & Hoffmann, J. A. Sensing infection in Drosophila: Toll and beyond. Semin. Immunol. 16, 43–53 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Jules Hoffmann and all of my former colleagues for the stimulating and encouraging environment in Strasbourg, France, and Nicolas Vodovar for providing the original illustration of figure 3. I am also indebted to the generous spirit of the Drosophila-research community, including Kathy Matthews at the Bloomington Stock Center, Bloomington, United States, and Iris Koch and Dirk Beuchle at the Tübingen Stock Centre, Tübingen, Germany, for providing the many fly stocks that made this work possible. My laboratory is supported by the Centre National de la Recherche Scientifique, France, and the Schlumberger and Bettencourt Foundations, France.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CD14

IκB

IL-1R

MD2

TLR4

FlyBase

Bc

Cactus

Cecropin A1

Dif

Diptericin

Dorsal

Drosomycin

Easter

Gastrulation defective

imd

Myd88

Pelle

Relish

Serpin-27A

snail

Snake

Spätzle

Toll-9

Tube

twist

FURTHER INFORMATION

Bruno Lemaitre's lab

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemaitre, B. The road to Toll. Nat Rev Immunol 4, 521–527 (2004). https://doi.org/10.1038/nri1390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing