Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myopathy with statin–fibrate combination therapy: clinical considerations

Abstract

Many patients who receive statin therapy for hyperlipidemia—such as patients with diabetes mellitus and metabolic syndrome—have residual cardiovascular risk. These patients often have dyslipidemia, including low levels of HDL cholesterol and elevated levels of triglycerides and small, dense LDL. For such patients, combination treatment with statins and fibrates is a potentially useful strategy to improve lipid and lipoprotein profiles and reduce cardiovascular risk. However, statin–fibrate combination regimens have potential adverse effects on skeletal muscle, including myopathy. To date, no large-scale, prospective, randomized, controlled trial has evaluated the safety and efficacy of statin–fibrate combination therapy; one such trial is underway but will not report data until 2010. Until then, clinicians need to consider pharmacokinetic, pharmacodynamic, metabolic, pathophysiologic and other factors that can increase the systemic exposure of statins and/or fibrates and hence heighten the risk of toxic effects on muscles, as well as data from clinical trials and recommendations of consensus panels to optimize the safety of such combination regimens. On the basis of currently available data, fenofibrate or fenofibric acid is the fibrate of choice when used in combination with a statin because each is, in theory, associated with a lower risk of myopathy than gemfibrozil.

Key Points

  • Statin–fibrate combination regimens might be useful for patients with insulin resistance and certain types of dyslipidemia; however, the safety and efficacy of such therapy have not been systematically evaluated

  • Risk factors of statin–fibrate-related myopathy include advanced age, female gender, low BMI, renal disease, diabetes mellitus, hypothyroidism, multisystem disease, fever, surgery, trauma, and strenuous physical exercise

  • The likelihood and/or severity of myopathy also depend on pharmacologic properties of the statin and the fibrate, such as their enzymatic metabolism or excretion and/or their protein-regulated intercellular transport

  • Fenofibrate or fenofibric acid may be fibrates of choice for statin–fibrate therapy because, according to pharmacokinetic and postmarketing data, they are associated with lower risks of myopathy (versus gemfibrozil)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concepts in the pathogenesis of myopathy associated with lipid-modifying therapies.
Figure 2: Changes in geometric mean plasma concentrations of a | rosuvastatin after dosing of rosuvastatin alone and rosuvastatin in combination with fenofibrate; and b | fenofibrate after dosing of fenofibrate alone and in combination with rosuvastatin.
Figure 3: Number of cases of rhabdomyolysis reported per million prescriptions dispensed of a | cerivastatin in combination with fenofibrate or gemfibrozil and b | statins other than cerivastatin in combination with fenofibrate or gemfibrozil.

Similar content being viewed by others

References

  1. Bloomfield, H. E. The role of fibrates in a statin world. Arch. Intern. Med. 166, 715–716 (2006).

    Article  PubMed  Google Scholar 

  2. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

  3. Abbott. TriCor® (fenofibrate tablets) US full prescribing information [online], (2008).

  4. Abbott. Trilipix® (fenofibric acid) delayed release capsules US full prescribing information [online],(2008).

  5. Pfizer. Lopid® (gemfibrozil tablets) US full prescribing information [online], (2008).

  6. Nakamura, Y. Pharmacogenomics and drug toxicity. N. Engl. J. Med. 359, 856–858 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Lazarou, J., Pomeranz, B. H. & Corey, P. N. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279, 1200–1205 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Frick, M. H. et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia: safety of treatment, changes in risk factors, and incidence of coronary heart disease. N. Engl. J. Med. 317, 1237–1245 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. [No authors listed]. WHO cooperative trial on primary prevention of ischaemic heart disease using clofibrate to lower serum cholesterol: mortality follow-up. Report of the Committee of Principal Investigators. Lancet 2, 379–385 (1980).

  10. Thompson, P. D., Clarkson, P. & Karas, R. H. Statin-associated myopathy. JAMA 289, 1681–1690 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Omar, M. A. & Wilson, J. P. FDA adverse event reports on statin-associated rhabdomyolysis. Ann. Pharmacother. 36, 288–295 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Graham, D. J. et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 292, 2585–2590 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Pasternak, R. C. et al. ACC/AHA/NHLBI Clinical advisory on the use and safety of statins. Circulation 106, 1024–1028 (2002).

    Article  PubMed  Google Scholar 

  14. McKenney, J. M., Davidson, M. H., Jacobson, T. A., Guyton, J. R. & National Lipid Association Statin Safety Assessment Task Force. Final conclusions and recommendations of the National Lipid Association Statin Safety Assessment Task Force. Am. J. Cardiol. 97 (Suppl. 1), S89–S94 (2006).

    Article  CAS  Google Scholar 

  15. Phillips, P. S. et al. Statin-associated myopathy with normal creatine kinase levels. Ann. Intern. Med. 137, 581–585 (2002).

    Article  PubMed  Google Scholar 

  16. Shek, A. & Ferrill, M. J. Statin–fibrate combination therapy. Ann. Pharmacother. 35, 908–917 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Law, M. & Rudnicka, A. R. Statin safety: a systematic review. Am. J. Cardiol. 97 (Suppl. 1), S52–S60 (2006).

    Article  CAS  Google Scholar 

  18. Shanahan, R. L., Kerzee, J. A., Sandhoff, B. G., Carroll, N. M. & Merenich, J. A. Low myopathy rates associated with statins as monotherapy or combination therapy with interacting drugs in a group model health maintenance organization. Pharmacotherapy 25, 345–351 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Toth, P. P., Harper, C. R. & Jacobson, T. A. Clinical characterization and molecular mechanisms of statin myopathy. Expert. Rev. Cardiovasc. Ther. 6, 955–969 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Laaksonen, R. On the mechanisms of statin-induced myopathy. Clin. Pharmacol. Ther. 79, 529–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Chapman, M. J. & Carrie, A. Mechanisms of statin-induced myopathy: a role for the ubiquitin-proteasome pathway? Arterioscler. Thromb. Vasc. Biol. 25, 2441–2444 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Noël, B. Regarding the mechanism of statin-induced myopathy. Am. Heart J. 149, E3 (2005).

    Article  PubMed  Google Scholar 

  23. Vladutiu, G. D. et al. Genetic risk factors associated with lipid-lowering drug-induced myopathies. Muscle Nerve 34, 153–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Oh, J., Ban, M. R., Miskie, B. A., Pollex, R. L. & Hegele, R. A. Genetic determinants of statin intolerance. Lipids Health Dis. 6, 7 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Diaczok, B. J. & Shali, R. Statins unmasking a mitochondrial myopathy: a case report and proposed mechanism of disease. South Med. J. 96, 318–320 (2003).

    Article  PubMed  Google Scholar 

  26. Brewer, H. B. Jr. Benefit-risk assessment of rosuvastatin 10 to 40 milligrams. Am. J. Cardiol. 92 (Suppl. 2), 23–29 (2003).

    Article  CAS  Google Scholar 

  27. Chucrallah, A., De Girolami, U., Freeman, R. & Federman, M. Lovastatin/gemfibrozil myopathy: a clinical, histochemical, and ultrastructural study. Eur. Neurol. 32, 293–296 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Stange, E. F. et al. Inhibition of HMG-CoA reductase in mononuclear cells during gemfibrozil treatment. Atherosclerosis 91, 257–265 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Schneider, A., Stange, E. F., Ditschuneit, H. H. & Ditschuneit, H. Fenofibrate treatment inhibits HMG-CoA reductase activity in mononuclear cells from hyperlipoproteinemic patients. Atherosclerosis 56, 257–262 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Farswan, M., Rathod, S. P., Upaganlawar, A. B. & Semwal, A. Protective effect of coenzyme Q10 in simvastatin and gemfibrozil induced rhabdomyolysis in rats. Indian J. Exp. Biol. 43, 845–848 (2005).

    CAS  PubMed  Google Scholar 

  31. Owczarek, J., Jasinska, M. & Orszulak-Michalak, D. Drug-induced myopathies. An overview of the possible mechanisms. Pharmacol. Rep. 57, 23–34 (2005).

    CAS  PubMed  Google Scholar 

  32. Dirks, A. J. & Jones, K. M. Statin-induced apoptosis and skeletal myopathy. Am. J. Physiol. Cell Physiol. 291, C1208–C1212 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Sacher, J., Weigl, L., Werner, M., Szegedi, C. & Hohenegger, M. Delineation of myotoxicity induced by 3-hydroxy-3-methylglutaryl CoA reductase inhibitors in human skeletal muscle cells. J. Pharmacol. Exp. Ther. 314, 1032–1041 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Flint, O. P., Masters, B. A., Gregg, R. E. & Durham, S. K. Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro. Toxicol. Appl. Pharmacol. 145, 91–98 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Laaksonen, R. et al. The effect of simvastatin treatment on natural antioxidants in low-density lipoproteins and high-energy phosphates and ubiquinone in skeletal muscle. Am. J. Cardiol. 77, 851–854 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Maeda, T., Kawane, T. & Horiuchi, N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology 144, 681–692 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Collisson, E. A. et al. Atorvastatin prevents RhoC isoprenylation, invasion, and metastasis in human melanoma cells. Mol. Cancer Ther. 2, 941–948 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Maeda, T. & Horiuchi, N. Simvastatin suppresses leptin expression in 3T3-L1 adipocytes via activation of the cyclic AMP–PKA pathway induced by inhibition of protein prenylation. J. Biochem. 145, 771–781 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Jantzen, F. et al. Isoprenoid depletion by statins antagonizes cytokine-induced down-regulation of endothelial nitric oxide expression and increases NO synthase activity in human umbilical vein endothelial cells. J. Physiol. Pharmacol. 58, 503–514 (2007).

    CAS  PubMed  Google Scholar 

  40. Blanco-Colio, L. M. et al. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors, atorvastatin and simvastatin, induce apoptosis of vascular smooth muscle cells by downregulation of Bcl-2 expression and Rho A prenylation. Atherosclerosis 161, 17–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Mutoh, T., Kumano, T., Nakagawa, H. & Kuriyama, M. Involvement of tyrosine phosphorylation in HMG-CoA reductase inhibitor-induced cell death in L6 myoblasts. FEBS Lett. 444, 85–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Li, X. et al. Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cells. J. Biol. Chem. 277, 15309–15316 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Nagashima, T., Okazaki, H., Yudoh, K., Matsuno, H. & Minota, S. Apoptosis of rheumatoid synovial cells by statins through the blocking of protein geranylgeranylation: a potential therapeutic approach to rheumatoid arthritis. Arthritis Rheum. 54, 579–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Zhong, W. B., Wang, C. Y., Chang, T. C. & Lee, W. S. Lovastatin induces apoptosis of anaplastic thyroid cancer cells via inhibition of protein geranylgeranylation and de novo protein synthesis. Endocrinology 144, 3852–3859 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Ikemoto, T. & Endo, M. Properties of Ca2+ release induced by clofibric acid from the sarcoplasmic reticulum of mouse skeletal muscle fibres. Br. J. Pharmacol. 134, 719–728 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rao, R. V. et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J. Biol. Chem. 276, 33869–33874 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, S. & Wallace, K. B. The effect of peroxisome proliferators on mitochondrial bioenergetics. Toxicol. Sci. 48, 82–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Akiyama, M. et al. Novel duplication mutation in the patatin domain of adipose triglyceride lipase (PNPLA2) in neutral lipid storage disease with severe myopathy. Muscle Nerve 36, 856–859 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Campagna, F. et al. Novel mutations in the adipose triglyceride lipase gene causing neutral lipid storage disease with myopathy. Biochem. Biophys. Res. Commun. 377, 843–846 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Fischer, J. et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat. Genet. 39, 28–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Molokhia, M., Bhatia, S. & Nitsch, D. Genetic determinants of statin-associated myopathy. Per. Med. 5, 481–494 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Hagenbuch, B. & Meier, P. J. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 447, 653–665 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Mano, Y., Usui, T. & Kamimura, H. The UDP-glucuronosyltransferase 2B7 isozyme is responsible for gemfibrozil glucuronidation in the human liver. Drug Metab. Dispos. 35, 2040–2044 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Goosen, T. C. et al. Atorvastatin glucuronidation is minimally and nonselectively inhibited by the fibrates gemfibrozil, fenofibrate, and fenofibric acid. Drug Metab. Dispos. 35, 1315–1324 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Prueksaritanont, T. et al. Comparative effects of fibrates on drug metabolizing enzymes in human hepatocytes. Pharm. Res. 22, 71–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Prueksaritanont, T. et al. Interconversion pharmacokinetics of simvastatin and its hydroxy acid in dogs: effects of gemfibrozil. Pharm. Res. 22, 1101–1109 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Prueksaritanont, T. et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J. Pharmacol. Exp. Ther. 301, 1042–1051 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Prueksaritanont, T. et al. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab. Dispos. 30, 1280–1287 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Wen, X., Wang, J. S., Backman, J. T., Kivistö, K. T. & Neuvonen, P. J. Gemfibrozil is a potent inhibitor of human cytochrome P450 2C9. Drug Metab. Dispos. 29, 1359–1361 (2001).

    CAS  PubMed  Google Scholar 

  60. Prueksaritanont, T. et al. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab. Dispos. 30, 505–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Shitara, Y., Hirano, M., Sato, H. & Sugiyama, Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP/OATP1B1; SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interactions between cerivastatin and gemfibrozil. J. Pharmacol. Exp. Ther. 311, 228–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Niemi, M., Backman, J. T., Juntti-Patinen, L., Neuvonen, M. & Neuvonen, P. J. Coadministration of gemfibrozil and itraconazole has only a minor effect on the pharmacokinetics of the CYP2C9 and CYP3A4 substrate nateglinide. Br. J. Clin. Pharmacol. 60, 208–217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, J. S., Neuvonen, M., Wen, X., Backman, J. T. & Neuvonen, P. J. Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab. Dispos. 30, 1352–1356 (2002).

    Article  PubMed  Google Scholar 

  64. VHA Pharmacy Benefits Management-Strategic Healthcare Group and The Medical Advisory Panel Statin-Fibrate Report: Focus on Safety [online], (2004).

  65. SEARCH Collaborative Group. et al. SLCO1B1 variants and statin-induced myopathy: a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

  66. Noé, J., Portmann, R., Brun, M. E. & Funk, C. Substrate-dependent drug–drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab. Dispos. 35, 1308–1314 (2007).

    Article  PubMed  CAS  Google Scholar 

  67. Yamazaki, M. et al. Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2- and P-glycoprotein-mediated transport. Xenobiotica 35, 737–753 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Hirano, M., Maeda, K., Shitara, Y. & Sugiyama, Y. Drug–drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab. Dispos. 34, 1229–1236 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Ho, R. H. et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression and pharmacogenetics. Gastroenterology 130, 1793–1806 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Kopplow, K., Letschert, K., König, J., Walter, B. & Keppler, D. Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol. Pharmacol. 68, 1031–1038 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Nezasa, K., Higaki, K., Takeuchi, M., Nakano, M. & Koike, M. Uptake of rosuvastatin by isolated rat hepatocytes: comparison with pravastatin. Xenobiotica 33, 379–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Hsiang, B. et al. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J. Biol. Chem. 274, 37161–37168 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Kalliokoski, A., Backman, J. T., Kurkinen, K. J., Neuvonen, P. J. & Niemi, M. Effects of gemfibrozil and atorvastatin on the pharmacokinetics of repaglinide in relation to SLCO1B1 polymorphism. Clin. Pharmacol. Ther. 84, 488–496 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Boyd, R. A. et al. Atorvastatin coadministration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. J. Clin. Pharmacol. 40, 91–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Schneck, D. W. et al. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin. Pharmacol. Ther. 75, 455–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Nakagomi-Hagihara, R., Nakai, D. & Tokui, T. Inhibition of human organic anion transporter 3-mediated pravastatin transport by gemfibrozil and its metabolites in humans. Xenobiotica 37, 416–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Nakagomi-Hagihara, R., Nakai, D., Tokui, T., Abe, T. & Ikeda, T. Gemfibrozil and its glucuronide inhibit the hepatic uptake of pravastatin mediated by OATP1B1. Xenobiotica 37, 474–486 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Jacobson, T. A. Combination lipid-lowering therapy with statins: safety issues in the postcerivastatin era. Expert Opin. Drug Saf. 2, 269–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Gustavson, L. E. et al. The effects of multiple doses of fenofibrate on the pharmacokinetics of pravastatin and its 3α-hydroxy isomeric metabolite. J. Clin. Pharmacol. 45, 947–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Pan, W. J. et al. Lack of a clinically significant pharmacokinetic interaction between fenofibrate and pravastatin in healthy volunteers. J. Clin. Pharmacol. 40, 316–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Martin, P. D., Dane, A. L., Schneck, D. W. & Warwick, M. J. An open-label, randomized, three-way crossover trial of the effects of coadministration of rosuvastatin and fenofibrate on the pharmacokinetic properties of rosuvastatin and fenofibric acid in healthy male volunteers. Clin. Ther. 25, 459–471 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Zhu, T. et al. ABT-335, the choline salt of fenofibric acid, does not have a clinically significant pharmacokinetic interaction with rosuvastatin in humans. J. Clin. Pharmacol. 49, 63–71 (2008).

    Article  PubMed  CAS  Google Scholar 

  83. Kyrklund, C., Backman, J. T., Neuvonen, M. & Neuvonen, P. J. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin. Pharmacol. Ther. 73, 538–544 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kyrklund, C. et al. Plasma concentrations of active lovastatin acid are markedly increased by gemfibrozil but not by bezafibrate. Clin. Pharmacol. Ther. 69, 340–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Spence, J. D., Munoz, C. E., Hendricks, L., Latchinian, L. & Khouri, H. E. Pharmacokinetics of the combination of fluvastatin and gemfibrozil. Am. J. Cardiol. 76, 80A–83A (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Durrington, P. N., Tuomilehto, J., Hamann, A., Kallend, D. & Smith, K. Rosuvastatin and fenofibrate alone and in combination in type 2 diabetes patients with combined hyperlipidaemia. Diabetes Res. Clin. Pract. 64, 137–151 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Farnier, M. et al. Efficacy and safety of the coadministration of ezetimibe/simvastatin with fenofibrate in patients with mixed hyperlipidemia. Am. Heart J. 153, 335e1–335e8 (2007).

    Article  CAS  Google Scholar 

  88. Gil-Extremera, B. et al. Efficacy and safety of ezetimibe/simvastatin co-administered with fenofibrate in mixed hyperlipidemic patients with metabolic syndrome. Metab. Syndr. Relat. Disord. 5, 305–314 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Grundy, S. M. et al. Effectiveness and tolerability of simvastatin plus fenofibrate for combined hyperlipidemia (the SAFARI trial). Am. J. Cardiol. 95, 462–468 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Koh, K. K. et al. Additive beneficial effects of fenofibrate combined with atorvastatin in the treatment of combined hyperlipidemia. J. Am. Coll. Cardiol. 45, 1649–1653 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Derosa, G. et al. Comparison of fluvastatin + fenofibrate combination therapy and fluvastatin monotherapy in the treatment of combined hyperlipidemia, type 2 diabetes mellitus, and coronary heart disease: a 12-month, randomized, double-blind, controlled trial. Clin. Ther. 26, 1599–1607 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Vega, G. L. et al. Effects of adding fenofibrate (200 mg/day) to simvastatin (10 mg/day) in patients with combined hyperlipidemia and metabolic syndrome. Am. J. Cardiol. 91, 956–960 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Farnier, M. & Dejager, S. Effect of combined fluvastatin–fenofibrate therapy compared with fenofibrate monotherapy in severe primary hypercholesterolemia. French Fluvastatin Study Group. Am. J. Cardiol. 85, 53–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Kayikçioğlu, M., Ozerkan, F. & Soydan, I. Effectiveness and safety of alternate-day simvastatin and fenofibrate on mixed hyperlipidemia. Am. J. Cardiol. 83, 1135–1137 (1999).

    Article  PubMed  Google Scholar 

  95. Ellen, R. L. & McPherson, R. Long-term efficacy and safety of fenofibrate and a statin in the treatment of combined hyperlipidemia. Am. J. Cardiol. 81, 60B–65B (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Wierzbicki, A. S., Lumb, P. J., Cheung, J. & Crook, M. A. Fenofibrate plus simvastatin therapy versus simvastatin plus cholestyramine therapy for familial hypercholesterolaemia. QJM 90, 631–634 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Wägner, A. M., Jorba, O., Bonet, R., Ordóñez-Llanos, J. & Pérez, A. Efficacy of atorvastatin and gemfibrozil, alone and in low dose combination, in the treatment of diabetic dyslipidemia. J. Clin. Endocrinol. Metab. 88, 3212–3217 (2003).

    Article  PubMed  CAS  Google Scholar 

  98. Vergoulas, G. et al. Combined treatment of hypercholesterolemia of renal transplant allograft recipients with fluvastatin and gemfibrozil. Transpl. Int. 13 (Suppl. 1), S64–S67 (2000).

    Article  PubMed  Google Scholar 

  99. Murdock, D. K. et al. Long-term safety and efficacy of combination gemfibrozil and HMG-CoA reductase inhibitors for the treatment of mixed lipid disorders. Am. Heart J. 138, 151–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Iliadis, E. A. & Rosenson, R. S. Long-term safety of pravastatin–gemfibrozil therapy in mixed hyperlipidemia. Clin. Cardiol. 22, 25–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Smit, J. W. et al. Treatment of combined hyperlipidemia with fluvastatin and gemfibrozil, alone or in combination, does not induce muscle damage. Am. J. Cardiol. 76, 126A–128A (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Rosenson, R. S. & Frauenheim, W. A. Safety of combined pravastatin–gemfibrozil therapy. Am. J. Cardiol. 74, 499–500 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Wiklund, O. et al. Pravastatin and gemfibrozil alone and in combination for the treatment of hypercholesterolemia. Am. J. Med. 94, 13–20 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Peters, J. R., Kubo, S. H., Olivari, M. T., Knutson, K. R. & Hunninghake, D. B. Treatment of hyperlipidemia in heart transplant recipients with gemfibrozil ± lovastatin. Am. J. Cardiol. 71, 1485–1488 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Feussner, G., Eichinger, M. & Ziegler, R. The influence of simvastatin alone or in combination with gemfibrozil on plasma lipids and lipoproteins in patients with type III hyperlipoproteinemia. Clin. Investig. 70, 1027–1035 (1992).

    CAS  PubMed  Google Scholar 

  106. Glueck, C. J., Speirs, J. & Tracy, T. Safety and efficacy of combined gemfibrozil–lovastatin therapy for primary dyslipoproteinemias. J. Lab. Clin. Med. 115, 603–609 (1990).

    CAS  PubMed  Google Scholar 

  107. Illingworth, D. R. & Bacon, S. Influence of lovastatin plus gemfibrozil on plasma lipids and lipoproteins in patients with heterozygous familial hypercholesterolemia. Circulation 79, 590–596 (1989).

    Article  CAS  PubMed  Google Scholar 

  108. Jones, P. H. et al. Efficacy and safety of ABT-335 (fenofibric acid) in combination with rosuvastatin in patients with mixed dyslipidemia: a phase 3 study. Atherosclerosis 204, 208–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Davidson, M. H., Clark, J. A., Glass, L. M. & Kanumalla, A. Statin safety: an appraisal from the adverse event reporting system. Am. J. Cardiol. 97, 32C–43C (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Weber. J. C. P. in Side Effects of Antiinflammatory/Analgesic Drugs: Advances in Inflammation Research 6th edn (Eds Rainsford, K. D. & Velo, G. P.) 1–7 (Raven, New York, 1984).

    Google Scholar 

  111. Jones, P. H. & Davidson, M. H. Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any statin. Am. J. Cardiol. 95, 120–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Holoshitz, N., Alsheikh-Ali, A. A. & Karas, R. H. Relative safety of gemfibrozil and fenofibrate in the absence of concomitant cerivastatin use. Am. J. Cardiol. 101, 95–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Chang, J. T., Staffa, J. A., Parks, M. & Green, L. Rhabdomyolysis with HMG-CoA reductase inhibitors and gemfibrozil combination therapy. Pharmacoepidemiol. Drug Saf. 13, 417–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Wandel, C., Kim, R. B., Guengerich, F. P. & Wood, A. J. Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro. Drug Metab. Dispos. 28, 895–898 (2000).

    CAS  PubMed  Google Scholar 

  115. Shitara, Y., Itoh, T., Sato, H., Li, A. P. & Sugiyama, Y. Inhibition of transporter-mediated hepatic uptake as a mechanism for drug–drug interaction between cerivastatin and cyclosporin A. J. Pharmacol. Exp. Ther. 304, 610–616 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Kajosaari, L. I. et al. Cyclosporine markedly raises the plasma concentrations of repaglinide. Clin. Pharmacol. Ther. 78, 388–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Ejendal, K. F. & Hrycyna, C. A. Differential sensitivities of the human ATP-binding cassette transporters ABCG2 and P-glycoprotein to cyclosporin A. Mol. Pharmacol. 67, 902–911 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Smith, S. C. Jr. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update, endorsed by the National Heart, Lung, and Blood Institute. Circulation 113, 2363–2372 (2006).

    Article  PubMed  Google Scholar 

  119. Jacobson, T. A. Toward 'pain-free' statin prescribing: clinical algorithm for diagnosis and management of myalgia. Mayo Clin. Proc. 83, 687–700 (2008).

    Article  PubMed  Google Scholar 

  120. Harper, C. R. & Jacobson, T. A. Managing dyslipidemia in chronic kidney disease. J. Am. Coll. Cardiol. 51, 2375–2384 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Bruckert, E., Hayem, G., Dejager, S., Yau, C. & Bégaud, B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients-—the PRIMO study. Cardiovasc. Drugs Ther. 19, 403–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Rubins, H. B. et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J. Med. 341, 410–418 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Robins, S. J. et al. Insulin resistance and cardiovascular events with low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Diabetes Care 26, 1513–1517 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Ginsberg, H. N. et al. Evolution of the lipid trial protocol of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am. J. Cardiol. 99 (Part A), 56i–67i (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Editorial assistance was provided by Stephen W. Gutkin, Rete Biomedical Communications Corp. (Wyckoff, NJ, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry A. Jacobson.

Ethics declarations

Competing interests

The author declares associations with the following companies: Abbott (consultant), AstraZeneca (consultant), Merck (consultant), GlaxoSmithKline (consultant), and Schering-Plough (consultant).

Supplementary information

Supplementary Box 1

Summary of manufacturers' recommendations when prescribing statins together with fibrates (and fibrates with statins) (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, T. Myopathy with statin–fibrate combination therapy: clinical considerations. Nat Rev Endocrinol 5, 507–518 (2009). https://doi.org/10.1038/nrendo.2009.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing