Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CDKS and CKIS: Molecular targets for tissue remodelling

Key Points

  • Effective tissue remodelling is essential to the survival of adult organs. Tissue remodelling is a regulated balance between pro- and anti-proliferative molecules. The cyclin-dependent kinases (CDKs) and the CDK inhibitors (CKIs) are a new class of therapeutic agents that target tissue remodelling in many organ systems. Understanding the circuitry of cyclin–CDK–CKI interactions in normal physiology and disease pathophysiology allows the rational design of new molecular therapies that have broad applicability to tissue remodelling. Conceptually, two approaches have been taken: targeting the CDKs through the design of inhibitors, such as the CDK-specific ATP antagonists; or targeting the tumour-suppressor proteins, or CKIs, INK4A (inhibitor of CDK4, polypeptide A), CIP1 (CDK-inhibitory protein 1) and KIP1 (kinase-inhibitory protein 1).

  • Molecular and biochemical studies have defined the complex interactions between the cyclins, CDKs and the CKIs. Mitogen-stimulated progression through the G1 phase of the cell cycle and initiation of DNA replication in S phase are coordinated by the CDKs, the activities of which are regulated by CKIs. The CDKs are holoenzyme complexes that contain cyclin-regulatory and CDK-catalytic subunits. Two families or enzymes mediate restriction-point control — the cyclin D- and cyclin E-dependent kinases. The CKIs are classified into two families on the basis of their structures and CDK targets: the CIP/KIP proteins, which act broadly on the cyclin D-, cyclin E- and cyclin A-dependent kinases, including CIP1, KIP1 and KIP2; and the INK4A proteins — INK4A, INK4B, INK4C and INK4D.

  • Blood vessels undergo a reparative process after vascular injury that is characterized by vascular-smooth-muscle-cell proliferation and inflammation, which leads to occlusive vascular lesions. Molecular-genetic studies provide evidence that KIP1 and CIP1 suppress excessive cell proliferation, apoptosis and matrix-protein production in arteries. Therapeutic strategies focus on upregulation of KIP1 and other CKIs within vascular lesions through drug-eluting stents.

  • The CIP/KIP proteins have distinct roles in subcompartments of the bone marrow to preserve proliferative capacity and robust replacement under stress conditions. CIP1 functions as a molecular switch to regulate the entry of stem cells into the cell cycle, and overexpression of CIP1 might be useful in preparative regimens for bone-marrow transplantation and stem-cell therapies. KIP1 controls progenitor proliferation and pool size, making it an attractive molecular target for manipulating stem-cell pool size ex vivo.

  • Cell proliferation and extracellular-matrix production are hallmarks of inflammatory diseases in many organ systems, including glomerulonephritis, dermatitis, arthritis, cirrhosis and atherosclerosis. The role of the CIP/KIP proteins in arresting cell proliferation and reducing inflammatory injury raises interesting possibilities for molecular therapies. Early clinical studies are examining the role of CKIs, as well as molecules that upregulate the expression of KIP1 or prevent its degradation, and these look promising for the treatment of glomerulonephritis and peripheral tolerance.

  • Most human cancers sustain mutations that alter the function of the retinoblastoma tumour-suppressor protein (RB) or the p53 transcription factor by direct mutation of gene sequences or by targeting genes that act epistatically to prevent their normal function. Functional disruption of RB or INK4A, or overexpression of cyclin D1 and CDK4, occur in many cancers, indicating that disabling the RB pathway might be essential for tumorigenesis. Promising approaches to treating dysregulation of RB and p53 pathways include CDK-specific ATPase antagonists, protein and peptide inhibitors of CDKs, and possibly the genetic manipulation of CIP/KIP proteins. CKIs are also being tested for prevention of chemotherapy-induced alopecia. The most promising approaches for molecular therapies of human malignancies are the CKIs.

Abstract

Effective tissue remodelling is essential to the survival of adult organs. Many of the signalling pathways that control these cellular decisions are regulated by nuclear interactions of cell-cycle proteins. Molecules that target cyclin-dependent kinases (CDKs) or CDK inhibitors (CKIs) represent a new class of therapeutic agents that influence tissue remodelling in several organ systems. An understanding of their cell-specific functions is leading to the development of exciting and bold approaches to the treatment cancer, cardiovascular disease and other diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CKIs and systemic diseases.
Figure 2: Cell-cycle pathways.
Figure 3: CKI regulation in normal physiology.
Figure 4: CKI regulation in disease pathophysiology.
Figure 5: CKIs are molecular targets to treat vascular proliferative diseases.
Figure 6: CIP1 and KIP1 distinctly affect haematopoiesis.

Similar content being viewed by others

References

  1. Gu, Y., Turek, C. W., & Morgan, D. O. Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366, 707–710 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Harper, J. W. et al. The p21 CDK-interacting protein CIP1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. El-Diery, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  Google Scholar 

  4. Xiong, Y. et al. p21 is a universal inhibitor of cyclin kinases. Nature 366, 701–704 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Dulic, V. et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76, 1013–1023 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Polyak, K. et al. p27KIP1, a cyclin–CDK inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 8, 9–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Polyak, K. et al. Cloning of p27KIP1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin/CDK protein kinase activity, is related to p21. Cell 78, 67–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, M. H., Reynisdóttir, I. & Massagué, J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9, 639–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Matsuoka, S. et al. p57KIP2, a structurally distinct member of the p21CIP1 cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650–662 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, J. et al. Separate domains of p21 involved in the inhibition of CDK kinase and PCNA. Nature 374, 386–388 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, J. et al. Cyclin-binding motifs are essential for the function of p21CIP1. Mol. Cell. Biol. 16, 4673–4682 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakanishi, M. et al. Identification of the active region of the DNA synthesis inhibitory gene p21Sdi1/CIP1/WAF1. EMBO J. 14, 555–563 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Warbrick, E. et al. A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. Curr. Biol. 5, 275–282 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, J. et al. Analysis of wild-type and mutant p21WAF1 gene activities. Mol. Biol. Cell 16, 1786–1793 (1996).

    Article  CAS  Google Scholar 

  16. Russo, A. A. et al. Crystal structure of the p27KIP1 cyclin-dependent kinase inhibitor bound to the cyclin A–CDK2 325-complex. Nature 382, 325–331 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Hannon, G. J. & Beach, D. p15INK4b is a potential effector of TGFβ-induced cell cycle arrest. Nature 371, 257–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Guan, K.-L. et al. Growth suppression by p18, a p16INKr/MTS1- and p15INK4b/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev. 8, 2939–2952 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Hirai, H. et al. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell. Biol. 15, 2672–2681 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chan, F. K. M. et al. Identification of human/mouse p19, a novel CDK4/CDK6 inhibitor with homology to p16ink4. Mol. Cell. Biol. 15, 2682–2688 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sherr, C. J. Mammalian G1 cyclins. Cell 73, 1059–1065 (1996).

    Article  Google Scholar 

  23. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).An excellent review of the role of CKIs in regulating CDK activity.

    Article  CAS  PubMed  Google Scholar 

  24. Xiong, Y., Zhang, H. & Beach, D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 7, 1572–1583 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Tanner, F. C. et al. Expression of cyclin-dependent kinase inhibitors in vascular disease. Circ. Res. 82, 396–403 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Sheaff, R. et al. Cyclin E–CDK2 is a regulator of p27KIP1. Genes Dev. 11, 1464–1478 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Rodier, G. et al. p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J. 20, 6672–6682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vlach, J., Hennecke, S. & Amati, B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27KIP1. EMBO J. 16, 5334–5344 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koff, A. et al. Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-β. Science 260, 536–539 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Pietenpol, J. et al. Assignment of the human p27KIP1 gene to 12p13 and its analysis in leukemias. Cancer Res. 55, 1206–1210 (1995).

    CAS  PubMed  Google Scholar 

  31. Zhang, Y. & Lin, S. C. Molecular characterization of the cyclin-dependent kinase inhibitor p27 promoter. Biochim. Biophys. Acta 1353, 307–317 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Ishida, N. et al. Phosphorylation at serine 10, a major phosphorylation site of p27KIP1, increases its protein stability. J. Biol. Chem. 275, 25146–25154 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Servant, M. J. et al. Differential regulation of p27KIP1 expression by mitogenic and hypertrophic factors: involvement of transcriptional and posttranscriptional mechanisms. J. Cell Biol. 148, 543–556 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Agrawal, D. et al. Repression of p27KIP1 synthesis by platelet-derived growth factor in BALB/c 3T3 cells. Mol. Cell. Biol. 16, 4327–4336 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hengst, L. & Reed, S. I. Inhibitors of the CIP/KIP family. Curr. Top. Microbiol. Immunol. 227, 25–41 (1996).

    Google Scholar 

  36. Millard, S. S. et al. Enhanced ribosomal association of p27KIP1 mRNA is a mechanism contributing to accumulation during growth arrest. J. Biol. Chem. 272, 7093–7098 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Miskimins, W. K. et al. Control of cyclin-dependent kinase inhibitor p27 expression by CAP-independent translation. Mol. Cell. Biol. 21, 4960–4967 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malek, N. P. et al. A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 413, 323–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Boehm, M. et al. A growth factor-dependent nuclear kinase phosphorylates p27KIP1 and regulates cell cycle progression. EMBO J. 21, 3390–3401 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pagano, M. et al. Role of the ubiquitin–proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Feldman, R. M. et al. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Bai, C. et al. SKP1 connects cell cycle regulation to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Skowyrs, D. et al. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).

    Article  Google Scholar 

  44. Sutterluty, H. et al. p45SKP2 promotes p27KIP1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Carrano, A. C. et al. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Tsvetkov, L. M. et al. p27(KIP1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661–664 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).References 47–49 report the interesting finding that targeted disruption of the mouse Kip1 gene causes a dose-dependent increase in animal size due to enlargement of all tissues, which contain more cells.

    Article  CAS  PubMed  Google Scholar 

  48. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85, 721–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell 85, 733–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).Deletion of CIP1 has no detectable effect on cell proliferation or apoptosis in a small-intestine model, whereas Cip1−/− mouse-embryo fibroblasts are defective in G1 arrest after DNA damage.

    Article  CAS  PubMed  Google Scholar 

  51. Deng, C. et al. Mice lacking p21CIP1/WAF1 undergo normal development but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Waga, S. et al. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574–578 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Luo, Y., Hurwitz, J. & Massagué, J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21CIP1. Nature 375, 159–161 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Halevy, O. et al. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267, 1018–1021 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Parker, S. et al. p53-Independent expression of p21CIP1 in muscle and other terminally differentiating cells. Science 267, 1024–1027 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Firpo, E. et al. Inactivation of a Cdk2 inhibitor during IL-2 induced proliferation of human T-lymphocytes. Mol. Cell. Biol. 14, 4889–4901 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nourse, J. et al. IL-2 mediated elimination of the p27KIP1 cyclin–CDK kinase inhibitor prevented by rapamycin. Nature 372, 570–573 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Coats, S. et al. Requirement of p27KIP1 for restriction point control of the fibroblast cell cycle. Science 272, 877–880 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Kato, J. et al. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27KIP1) of cyclin-dependent kinase 4 activation. Cell 79, 487–489 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Reynisdóttir, I. et al. KIP/CIP and INK4 CDK inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev. 9, 1831–1845 (1995).

    Article  PubMed  Google Scholar 

  61. Gordon, D. et al. Cell proliferation in human coronary arteries. Proc. Natl Acad. Sci. USA 87, 4600–4604 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koyama, H. et al. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of CDK2 inhibitors. Cell 87, 1069–1078 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Tanner, F. C. et al. Differential effects of the cyclin-dependent kinase inhibitors p27KIP1, p21CIP1, and p16INK4 on vascular smooth muscle cell proliferation. Circulation 101, 2022–2025 (2000).References 63–65 show that overexpression of CIP1 or KIP1 in balloon-injured blood vessels prevents neointimal hyperplasia of VSMCs.

    Article  CAS  PubMed  Google Scholar 

  64. Yang, Z. Y. et al. Role of the p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury. Proc. Natl Acad. Sci. USA 93, 7905–7910 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang, M. W. et al. Adenovirus-mediated overexpression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J. Clin. Invest. 96, 2260–2268 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boehm, M. et al. Deletion of the p27KIP1 and p21CIP1 loci accelerates cellular proliferation and impairs arterial wound repair. Circulation 104, 1553 (2001).

    Google Scholar 

  67. Smith, S. C. et al. ACC/AHA guidelines of percutaneous coronary interventions (revision of the 1993 PTCA guidelines) — executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 37, 2215–2238 (2001).

    Article  PubMed  Google Scholar 

  68. Sigwart, U. et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med. 316, 701–706 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22, 989), a new antifungal antibiotic. I: Toxoneme of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo) 28, 721–726 (1975).

    Article  CAS  Google Scholar 

  70. Sehgal, S. N., Baker, H. & Vezina, C. Rapamycin (AY-22, 989), a new antifungal antibiotic. II: Fermentation, isolation and characterization. J. Antibiot. (Tokyo) 28, 721–726 (1975).

    Article  Google Scholar 

  71. Marks, A. R. Cellular functions of the immunophilins. Physiol. Rev. 76, 631–649 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Marx, S. O. et al. Rapamycin–FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ. Res. 76, 412–417 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Poon, M. et al. Rapamycin inhibits smooth muscle cell migration. J. Clin. Invest. 98, 2277–2283 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bierer, B. E. et al. Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc. Natl Acad. Sci. USA 87, 9231–9235 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morris, R. et al. Rapamycin (sirolimus) inhibits vascular smooth muscle cell DNA synthesis in vitro and suppresses narrowing in arterial allografts and in balloon-injured carotid arteries: evidence that rapamycin antagonizes growth factor action on immune and nonimmune cells. Transplant. Proc. 27, 430–431 (1995).

    CAS  PubMed  Google Scholar 

  76. Gallo, R. et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by rapamycin. Circulation 99, 2164–2170 (1998).

    Article  Google Scholar 

  77. Luo, Y. et al. Rapamycin resistance tied to defective regulation of p27KIP1. Mol. Cell. Biol. 16, 6744–6751 (1995).The ability to regulate KIP1 levels is important for rapamycin to exert its antiproliferative effects.

    Article  Google Scholar 

  78. Sun, J. et al. A role for p27KIP1 in vascular smooth muscle cell migration. Circulation 103, 2967–2972 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Sousa, J. E. et al. Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries. Circulation 103, 192–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Sousa, J. E. et al. Sustained suppression of neointimal proliferation by Sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation 104, 2007–2011 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Morice, M. C. et al. A randomized (double blind) study with the Sirolimus coated BX velocity balloon expandable stent (CYPHER) in the treatment of patients with de novo native coronary artery lesions. [online] (cited 24 Jun 2002) 〈www.clinicaltrialresults.org〉 (2002).

  82. Morice, M. C. et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 23, 1773–1780 (2002).This study (RAVEL) reports the results of a Phase III trial of rapamycin-coated stents compared with non-coated stents to prevent coronary restenosis. None of the patients in the Sirolimus-stent group had restenosis (defined as 50% or more of coronary-artery lumen obstruction).

    Article  Google Scholar 

  83. Wani, M. C. et al. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327 (1971).

    Article  CAS  PubMed  Google Scholar 

  84. Schiff, P. B. & Horwitz, S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl Acad. Sci. USA 77, 1561–1565 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rowinsky, E. K. & Donehower, R. C. Paclitaxel (Taxol). N. Engl. J. Med. 332, 1004–1014 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Walsh, V. & Goodman, J. The billion dollar molecule: taxol in historical and theoretical perspective. Clio. Med. 66, 245–267 (2002).

    PubMed  Google Scholar 

  87. Sollott, S. J. et al. Taxol inhibits neointimal smooth muscle cell accumulation after angioplasty in the rat. J. Clin. Invest. 95, 1869–1876 (1995).Taxol blocks VSMC proliferation and migration in balloon-injured blood vessels at levels two orders of magnitude lower than used clinically to treat human malignancy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heldman, A. W. et al. Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation 103, 2289–2295.

  89. Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood 81, 2844–2853 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Mauch, P., Ferrara, J. & Hellman, S. Stem cell self-renewal considerations in bone marrow transplantation. Bone Marrow Transplant. 4, 601–607 (1989).

    CAS  PubMed  Google Scholar 

  91. Gardner, R. V., Astle, C. M. & Harrison, D. E. Hematopoietic precursor cell exhaustion is a cause of proliferative defect in primitive hematopoietic stem cells (PHSC) after chemotherapy. Exp. Hematol. 25, 495–501 (1997).

    CAS  PubMed  Google Scholar 

  92. Dao, M. A., Taylor, N. & Nolta, J. A. Reduction in levels of the cyclin-dependent kinase inhibitor p27(KIP-1) coupled with transforming growth factor-β neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cells. Proc. Natl Acad. Sci. USA 95, 13006–13011 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Taniguchi, T. et al. Expression of p21CIP1/Waf1/Sdi1 and p27(KIP1) cyclin-dependent kinase inhibitors during human hematopoiesis. Blood 93, 4167–4178 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Yaroslavskiy, B. et al. Subcellular and cell-cycle expression profiles of CDK-inhibitors in normal differentiating myeloid cells. Blood 93, 2907–2917 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Mantel, C. et al. Involvement of p21CIP1 and p27KIP1 in the molecular mechanisms of steel factor-induced proliferative synergy in vitro and or p21CIP1 in the maintenance of stem/progenitor cells in vivo. Blood 88, 3710–3719 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Braun, S. E. et al. A positive effect of the p21cip1/waf1 in the colony formation from murine myeloid progenitor cells as assessed by retroviral-mediated gene transfer. Blood Cells Mol. Dis. 24, 138–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000).CIP1 is a molecular switch that governs the entry of stem cells into the cell cycle; in its absence, increased cell cycling leads to stem-cell exhaustion.

    Article  CAS  PubMed  Google Scholar 

  98. Tong, X. & Srour, E. F. TGF-β suppresses cell division of G0 CD34+ cells while maintaining primitive hematopoietic potential. Exp. Hematol. 26, 6884–6888 (1998).

    Google Scholar 

  99. Cheng, T. et al. Stem cell repopulation efficiency but not pool size is governed by p27KIP1. Nature Med. 6, 1235–1240 (2000).Using KIP1-deficient stem cells, the authors show that KIP1 regulates stem-cell-progenitor proliferation and pool size.

    Article  CAS  PubMed  Google Scholar 

  100. Ophascharoensuk, V. et al. The cyclin-dependent kinase inhibitor p27KIP1 safeguards against inflammatory injury. Nature Med. 4, 575–580 (1998).Experimental glomerulonephritis was markedly exacerbated in Kip1−/− mice due to increased glomerular-cell proliferation, apoptosis and matrix-protein accumulation.

    Article  CAS  PubMed  Google Scholar 

  101. Schwartz, R. H. T-cell clonal anergy. Curr. Opin. Immunol. 9, 351–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Boussiotis, V. A. et al. p27KIP1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes. Nature Med. 6, 290–297 (2000).Using anergic human T-cell clones and tolerant alloreactive mouse T cells, the authors show that KIP1 is responsible for the blockade of clonal expansion of anergic T cells in vitro and in vivo.

    Article  CAS  PubMed  Google Scholar 

  103. Aikawa, T., Segre, G. V. & Lee, K. Fibroblast growth factor inhibits chondrocytic growth through induction of p21 and subsequent inactivation of cyclin E–CDK2. J. Biol. Chem. 276, 29347–29352 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Missero, C. et al. Involvement of the cell-cycle inhibitor CIP1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc. Natl Acad. Sci. USA 92, 5451–5455 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Missero, C. et al. The absence of p21CIP1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev. 10, 3065–3075 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Gartel, A. L. et al. p21WAF1/CIP1 expression is induced in newly nondividing cells in diverse epithelia and during differentiation of the Caco-2 intestinal cell line. Exp. Cell Res. 227, 171–181 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Di Cunto, F. et al. Inhibitory function of p21CIP1/WAF1 in differentiation of primary mouse keratinocytes independent of cell cycle control. Science 280, 1069–1072 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Al-Douahji, M. et al. The cyclin kinase inhibitor p21WAF1/CIP1 is required for glomerular hypertrophy in experimental diabetic nephropathy. Kidney Int. 56, 1691–1699 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, J. & Walsh, K. Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273, 359–361 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kuan, C. J., Al-Douahji, M. & Shankland, S. J. The cyclin kinase inhibitor p21WAF1/CIP1 is increased in experimental diabetic nephropathy: potential role in glomerular hypertrophy. J. Am. Soc. Nephrol. 9, 986–993 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Topley, G. I. et al. p21WAF1/CIP1 functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proc. Natl Acad. Sci. USA 96, 9089–9094 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Tsihlias, J., Kapusta, L. & Slingerland, J. The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu. Rev. Med. 50, 401–423 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from diverging signals. Genes Dev. 12, 2973–2983 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Weinberg, R. A. The retinoblastoma gene and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Sherr, C. J. The INK4A/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol. 2, 731–737 (2001).

    Article  CAS  Google Scholar 

  118. Sionov, R. V. & Haupt, Y. The cellular response to p53: the decision between life and death. Oncogene 18, 6145–6157 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Bates, S. & Vousden, K. H. Mechanisms of p53-mediated apoptosis. Cell. Mol. Life Sci. 55, 28–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, Y. & Xiong, Y. Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ. 12, 175–186 (2001).

    CAS  PubMed  Google Scholar 

  121. Quelle, D. E. et al. Alternative reading frames of the INK4A tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Weichselbaum, R. R. & Kufe, D. Gene therapy of cancer. Lancet 349, 10–12 (1997).

    Article  CAS  Google Scholar 

  123. Chen, Y. N. et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl Acad. Sci. USA 96, 4325–4329 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fischer, P. M. & Lane, D. P. Inhibitors of cyclin-dependent kinases as anti-cancer therapeutics. Curr. Med. Chem. 7, 11213–11245 (2000).

    Article  Google Scholar 

  125. Senderowicz, A. M. et al. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J. Clin. Oncol. 16, 2986–2929 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Senderowicz, A. M. Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene 19, 6600–6606 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Fischer, P. M. Recent advances and new directions in the discovery and development of cyclin-dependent kinase inhibitors. Curr. Opin. Drug Discov. Dev. 4, 623–634 (2001).An excellent review of the medicinal chemistry of inhibitors of the enzymatic functions of CDKs and inhibitors of protein–protein interactions that lead to inactivation of CDK function.

    CAS  Google Scholar 

  128. Ball, K. L. et al. Cell-cycle arrest and inhibition of CDK4 activity by small peptides based on the carboxy-terminal domain of p21WAF1. Curr. Biol. 7, 71–80 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Fahraeus, R. et al. New approaches to cancer therapies. J. Pathol. 187, 138–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Sharma, S. K. et al. Identification of E2F-1/Cyclin A antagonists. Bioorg. Med. Chem. Lett. 11, 2449–2452 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Cohen, B. A., Colas, P. & Brents, P. An artificial cell-cycle inhibitor isolated from a combinatorial library. Proc. Natl Acad. Sci. USA 95, 14272–14277 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Colas, P. Combinatorial protein reagents to manipulate protein function. Curr. Opin. Chem. Biol. 4, 54–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Donnellan, R. & Chetty, R. Cyclin E in human cancers. FASEB J. 13, 773–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Loda, M. et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nature Med. 3, 231–234 (1997).KIP1 expression and degradation was examined in human colorectal carcinomas; low KIP1 expression resulted from enhanced proteolytic activity and was an independent marker of poor prognosis by multivariate analysis.

    Article  CAS  PubMed  Google Scholar 

  135. Catzavelos, C., Bhattacharya, N. & Ung, Y. C. Decreased levels of the cell-cycle inhibitor p27KIP1 protein: prognostic implications in primary breast cancer. Nature Med. 3, 227–230 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Porter, P. L. et al. Expression of cell-cycle regulators p27KIP1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nature Med. 3, 222–225 (1997).High levels of cyclin E and low levels of KIP1 in breast ductal carcinomas were strongly predictive of increased mortality.

    Article  CAS  PubMed  Google Scholar 

  137. Schwarze, S. R. et al. Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cells. Oncogene 20, 8184–8194 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Fero, M. L. et al. The murine gene p27KIP1 is haplo-insufficient for tumour suppression. Nature 396, 177–180 (1998).Both Kip1+/− and Kip1−/− mice are predisposed to tumors in many tissues when challenged with γ-irradiation or a chemical carcinogen, and the remaining wild-type allele is neither mutated nor silenced, which indicates that KIP1 might be haplosufficient for tumour suppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Davis, S. T. et al. Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors. Science 291, 134–137 (2001).Inhibition of CDK2 is a therapeutic strategy for the prevention of chemotherapy-induced alopecia by arresting the cell cycle and reducing the sensitivity of the dermal epithelium to cell-cycle-active cytotoxic agents.

    Article  CAS  PubMed  Google Scholar 

  140. Boehm, M. & Nabel, E. G. Cell cycle and cell migration. Circulation 103, 2879–2881 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Sherr, C. J. The Pezcoller Lecture: cancer cell cycles revisited. Cancer Res. 60, 3689–3695 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

breast cancer

colon cancer

head and neck cancer

leukaemia

lung cancer

lymphoma

ovarian cancer

prostate tumours

LocusLink

AKT

ARF

calcineurin

CD34

CDK2

CDK4

CDK6

CDKN2A

CIP1

cyclin A

cyclin D

cyclin E

FKBP12

HDM2

IL-2

INK4B

INK4C

INK4D

JAB1

c-JUN

KIP1

KIP2

KIS

MAPKK1

MAPKK2

Mdm2

p53

PCNA

PI3K

p7056K

RB

SP1

TGF-β

TOR

Medscape DrugInfo

aspirin

paclitaxel

FURTHER INFORMATION

FDA

Glossary

CYCLIN-DEPENDENT KINASES

(CDKs). Holoenzymes that contain regulatory (cyclin) and catalytic (CDK) subunits. Two families of enzymes — the cyclin D- and cyclin E-dependent kinases — regulate the G1-to-S-phase transition.

CDK INHIBITORS

(CKIs) There are two families of CDK inhibitors, which are assigned according to their structure and CDK targets. The INK4 proteins specifically inhibit the catalytic subunits of CDK4 and CDK6. The CIP/KIP family affects the activities of cyclin D-, cyclin E- and cyclin A-dependent kinases.

TUMOUR-SUPPRESSOR PROTEIN

A protein that suppresses the formation of tumours or, alternatively, a protein that promotes carcinogenesis when inactivated.

CIP/KIP FAMILY

A family of genes that includes CIP1, KIP1 and KIP2. CIP stands for CDK-inhibitory protein. KIP stands for kinase-inhibitory protein.

INK4 FAMILY

The inhibitor-of-CDK4 family. A family of genes that encode an inhibitor of CDK4, and which are designated in the order of discovery: INK4A, INK4B, INK4C and INK4D.

RETINOBLASTOMA TUMOUR-SUPPRESSOR PROTEIN

(RB). The retinoblastoma tumour-suppressor protein limits cell proliferation by preventing entry into the S phase of the cell cycle. It does this, in part, by blocking E2F transcription factors from activating genes that are needed for DNA replication.

E2F TRANSCRIPTION FACTOR

A heterodimeric transcription factor that is composed of an E2F subunit and either DP1 or DP2.

HAEMATOPOIETIC PROGENITOR CELLS

These cells give rise to more mature cell types and might or might not be self-renewing.

RESTENOSIS

A recurrence of clinical symptoms after percutaneous transluminal coronary angioplasty (PTCA). The pathology results from elastic recoil of the vessel, platelet thrombosis, vascular-smooth-muscle-cell hyperplasia and vascular remodelling.

RESTENOSIS RATE

The percentage of patients undergoing percutaneous transluminal coronary angioplasty (PTCA) who develop restenosis.

IMMUNOPHILIN

A cytosolic protein that binds to immunosuppressive drugs.

HAEMATOPOIETIC STEM CELLS

These self-renewing cells give rise to mature, circulating red and white blood cells.

GLOMERULONEPHRITIS

A group of diseases in the kidney that are caused by inflammation and cell proliferation, which results in gradual, progressive destruction of the internal kidney structures or glomeruli.

HAPLOINSUFFICIENCY

A state in which loss of only one of two alleles of a gene disables its function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabel, E. CDKS and CKIS: Molecular targets for tissue remodelling. Nat Rev Drug Discov 1, 587–598 (2002). https://doi.org/10.1038/nrd869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing