Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds

Key Points

  • Major hurdles in early-stage drug discovery include how to triage hit compounds identified from cell-based screens, as well as how to rapidly evaluate their cellular efficacy and pinpoint side effects of compounds from target-driven screens.

  • Multi-parameter phenotypic profiling of small molecules can provide important insights into the mechanisms of action of hit compounds, thus expediting the selection of lead compounds for drug development.

  • Current phenotypic profiling technologies, including mRNA-, protein- and imaging-based technologies, together with data analysis methods that can be applied to multidimensional data sets, are reviewed and compared in terms of their information content, throughput, cost and scalability.

  • The most important challenge is how to integrate phenotypic profiles with genetic mutations, chemical similarity and biochemical activity profiles in a way that improves decision making and enables rapid hypothesis and model testing.

  • It is predicted that systematic integration of phenotypic approaches into the existing linear 'disease to target to drug' approach will improve success rates of lead selection and optimization early in the drug discovery process.

Abstract

Multi-parameter phenotypic profiling of small molecules provides important insights into their mechanisms of action, as well as a systems level understanding of biological pathways and their responses to small molecule treatments. It therefore deserves more attention at an early step in the drug discovery pipeline. Here, we summarize the technologies that are currently in use for phenotypic profiling — including mRNA-, protein- and imaging-based multi-parameter profiling — in the drug discovery context. We think that an earlier integration of phenotypic profiling technologies, combined with effective experimental and in silico target identification approaches, can improve success rates of lead selection and optimization in the drug discovery process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiplexity and throughput of phenotypic profiling technologies.
Figure 2: Modalities of profiling technologies.
Figure 3: Single-cell analysis.
Figure 4: Integration of information.

Similar content being viewed by others

References

  1. Fishman, M. C. & Porter, J. A. Pharmaceuticals: a new grammar for drug discovery. Nature 437, 491–493 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hart, C. P. Finding the target after screening the phenotype. Drug Discov. Today 10, 513–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Crisman, T. J. et al. Understanding false positives in reporter gene assays: in silico chemogenomics approaches to prioritize cell-based HTS data. J. Chem. Inf. Model 47, 1319–1327 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Butte, A. The use and analysis of microarray data. Nature Rev. Drug Discov. 1, 951–960 (2002).

    Article  CAS  Google Scholar 

  5. Yang, Y. H. & Speed, T. Design issues for cDNA microarray experiments. Nature Rev. Genet. 3, 579–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Gunther, E. C., Stone, D. J., Gerwien, R. W., Bento, P. & Heyes, M. P. Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc. Natl Acad. Sci. USA 100, 9608–9613 (2003). This study describes the development of statistical methods to classify drugs using expression profiling data and the discovery of a small set of expression biomarkers for classifying antipsychotic drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000). This paper showed that the cellular pathways affected by genetic or chemical perturbations can be identified by pattern matching of a compendium of expression profiles corresponding to 300 diverse mutations and chemical treatments in Saccharomyces cerevisiae.

    Article  CAS  PubMed  Google Scholar 

  8. Bugelski, P. J. Gene expression profiling for pharmaceutical toxicology screening. Curr. Opin. Drug Discov. Devel. 5, 79–89 (2002).

    CAS  PubMed  Google Scholar 

  9. Butcher, R. A. & Schreiber, S. L. Using genome-wide transcriptional profiling to elucidate small-molecule mechanism. Curr. Opin. Chem. Biol. 9, 25–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Stoughton, R. B. & Friend, S. H. How molecular profiling could revolutionize drug discovery. Nature Rev. Drug Discov. 4, 345–350 (2005).

    Article  CAS  Google Scholar 

  11. Gunther, E. C., Stone, D. J., Rothberg, J. M. & Gerwien, R. W. A quantitative genomic expression analysis platform for multiplexed in vitro prediction of drug action. Pharmacogenomics J. 5, 126–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bol., D. & Ebner, R. Gene expression profiling in the discovery, optimization and development of novel drugs: one universal screening platform. Pharmacogenomics 7, 227–235 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Stegmaier, K. et al. Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nature Genet. 36, 257–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Peck, D. et al. A method for high-throughput gene expression signature analysis. Genome Biol. 7, R61 (2006). This study describes a low-cost and scalable approach to gene expression signature analysis that combines ligation-mediated amplification with an optically addressed microsphere and a flow cytometric detection system.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stegmaier, K. et al. Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma. PLoS Med. 4, e122 (2007). The work described here showed that gene expression signature profiles can be used in a primary screen to identify lead compounds for previously untractable targets.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bronstein, I., Fortin, J., Stanley, P. E., Stewart, G. S. & Kricka, L. J. Chemiluminescent and bioluminescent reporter gene assays. Anal. Biochem. 219, 169–181 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374–378 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walsh, C. T. Posttranslational Modification of Proteins: Expanding Nature's Inventory 1–47 (Roberts and Company, Greenwood Village, 2005).

    Google Scholar 

  19. Stockwell, B. R., Haggarty, S. J. & Schreiber, S. L. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem. Biol. 6, 71–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Earley, M. C. et al. Report from a workshop on multianalyte microsphere assays. Cytometry 50, 239–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Gembitsky, D. S., Lawlor, K., Jacovina, A., Yaneva, M. & Tempst, P. A prototype antibody microarray platform to monitor changes in protein tyrosine phosphorylation. Mol. Cell Proteomics 3, 1102–1118 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, H. & Snyder, M. Protein chip technology. Curr. Opin. Chem. Biol. 7, 55–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Haab, B. B., Dunham, M. J. & Brown, P. O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, RESEARCH0004 (2001).

  25. Michaud, G. A. et al. Analyzing antibody specificity with whole proteome microarrays. Nature Biotechnol. 21, 1509–1512 (2003).

    Article  CAS  Google Scholar 

  26. Cravatt, B. F., Wright, A. T. & Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Chong, P. K., Gan, C. S., Pham, T. K. & Wright, P. C. Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: implication of multiple injections. J. Proteome Res. 5, 1232–1240 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature Biotechnol. 25, 1035–1044 (2007). This paper describes a quantitative proteomics method to generate a binding profile for a kinase inhibitor.

    Article  CAS  Google Scholar 

  29. Kislinger, T. & Emili, A. Multidimensional protein identification technology: current status and future prospects. Expert Rev. Proteomics 2, 27–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Motoyama, A. & Yates, J. R. 3rd Multidimensional LC separations in shotgun proteomics. Anal. Chem. 80, 7187–7193 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D. A. & White, F. M. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl Acad. Sci. USA 104, 5860–5865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. George, T. C. et al. Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer. Cytometry A 59, 237–245 (2004).

    Article  PubMed  Google Scholar 

  34. Edwards, B. S., Oprea, T., Prossnitz, E. R. & Sklar, L. A. Flow cytometry for high-throughput, high-content screening. Curr. Opin. Chem. Biol. 8, 392–398 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Krutzik, P. O. & Nolan, G. P. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nature Methods 3, 361–368 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Krutzik, P. O. & Nolan, G. P. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A 55, 61–70 (2003).

    Article  PubMed  Google Scholar 

  37. Nolan, G. P. Deeper insights into hematological oncology disorders via single-cell phospho-signaling analysis. Hematology Am. Soc. Hematol. Educ. Program 123–127,509 (2006).

  38. Wei, G. et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10, 331–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Irish, J. M. et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Krutzik, P. O., Crane, J. M., Clutter, M. R. & Nolan, G. P. High-content single-cell drug screening with phosphospecific flow cytometry. Nature Chem. Biol. 4, 132–142 (2008). This work highlights a flow cytometry-based screen for inhibitors of multiple signalling pathways in heterogeneous primary cell populations at the single cell level.

    Article  CAS  Google Scholar 

  41. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nature Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  Google Scholar 

  42. Giuliano, K. A., Haskins, J. R. & Taylor, D. L. Advances in high content screening for drug discovery. Assay Drug Dev. Technol. 1, 565–577 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Lang, P., Yeow, K., Nichols, A. & Scheer, A. Cellular imaging in drug discovery. Nature Rev. Drug Discov. 5, 343–356 (2006).

    Article  CAS  Google Scholar 

  44. Venkatesh, N. et al. Chemical genetics to identify NFAT inhibitors: potential of targeting calcium mobilization in immunosuppression. Proc. Natl Acad. Sci. USA 101, 8969–8974 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, K. & Murphy, R. F. From quantitative microscopy to automated image understanding. J. Biomed. Opt. 9, 893–912 (2004).

    Article  PubMed  Google Scholar 

  46. Abraham, V. C., Taylor, D. L. & Haskins, J. R. High content screening applied to large-scale cell biology. Trends Biotechnol. 22, 15–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. MacDonald, M. L. et al. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nature Chem. Biol. 2, 329–337 (2006).

    Article  CAS  Google Scholar 

  48. Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004). This study describes cytological profiling of known drugs by a microscopy and data analysis method that successfully categorized blinded drugs.

    Article  CAS  PubMed  Google Scholar 

  49. Tanaka, M. et al. An unbiased cell morphology-based screen for new, biologically active small molecules. PLoS Biol. 3, e128 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rabut, G. & Ellenberg, J. Automatic real-time three-dimensional cell tracking by fluorescence microscopy. J. Microsc. 216, 131–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, M., Zhou, X., King, R. W. & Wong, S. T. Context based mixture model for cell phase identification in automated fluorescence microscopy. BMC Bioinformatics 8, 32 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Young, D. W. et al. Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nature Chem. Biol. 4, 59–68 (2008). In this study, factor analysis was used as a tool for rapid data reduction and to define cell phenotypes. Compound mechanisms of action were inferred from activity profiles integrated with predicted target binding profiles.

    Article  CAS  Google Scholar 

  53. Gao, Y. & Church, G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 21, 3970–3975 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006). This study describes a novel statistical method, the Connectivity Map, that uses gene expression profiles to find connections between small molecules that share a mechanism of action.

    Article  CAS  PubMed  Google Scholar 

  55. Hieronymus, H. et al. Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10, 321–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Giuliano, K. A. et al. Systems cell biology knowledge created from high content screening. Assay Drug Dev. Technol. 3, 501–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Slack, M. D., Martinez, E. D., Wu, L. F. & Altschuler, S. J. Characterizing heterogeneous cellular responses to perturbations. Proc. Natl Acad. Sci. USA 105, 19306–19311 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, J. et al. Cellular phenotype recognition for high-content RNA interference genome-wide screening. J. Biomol. Screen 13, 29–39 (2008).

    Article  PubMed  Google Scholar 

  59. Loo, L. H., Wu, L. F. & Altschuler, S. J. Image-based multivariate profiling of drug responses from single cells. Nature Methods 4, 445–453 (2007). This paper describes a multivariate method to classify untreated and treated human cancer cells on the basis of single-cell phenotypic measurements. The classification provides a score, measuring the magnitude of the drug effect, and a vector, indicating the simultaneous phenotypic changes induced by the drug.

    CAS  PubMed  Google Scholar 

  60. Spearman, C. General intelligence, objectively determined and measured. Am. J. Psychol. 15, 201–293 (1904).

    Article  Google Scholar 

  61. Jenkins, J. L., Bender, A. & Davies, J. W. In silico target fishing: predicting biological targets from chemical structure. Drug Discov. Today Technol. 3, 413–421 (2006).

    Article  Google Scholar 

  62. Bender, A. et al. Using ligand based models for protein domains to predict novel molecular targets. and applications to triaging affinity chromatography data. J. Proteome Res. 8, 2575–2585 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Bender, A. et al. Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprint. Comb. Chem. High Throughput Screen 10, 719–731 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Prathipati, P., Ma, N., Manjunatha, U. & Bender, A. Fishing the target of antitubercular compounds: in silico target deconvolution model development and validation. J. Proteome Res. 20 Mar 2009 (doi:10.1021/pr8010843).

    Article  CAS  PubMed  Google Scholar 

  65. Rines, D. R. et al. Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells. Genome Biol. 9, R44 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Root, D. E., Hacohen, N., Hahn, W. C., Lander, E. S. & Sabatini, D. M. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nature Methods 3, 715–719 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Campillos, M., Kuhn, M., Gavin, A.C., Jensen, L.J. & Bork, P. Drug target identification using side-effect similarity. Science 321, 263–266 (2008). This study showed that phenotypic side-effect similarities can be used to infer whether two drugs share a target, and showed the feasibility of using phenotypic information to infer molecular interactions.

    Article  CAS  PubMed  Google Scholar 

  68. Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Nolan, G. P. What's wrong with drug screening today. Nature Chem. Biol. 3, 187–191 (2007).

    Article  CAS  Google Scholar 

  70. Kitano, H. A robustness-based approach to systems-oriented drug design. Nature Rev. Drug Discov. 6, 202–210 (2007).

    Article  CAS  Google Scholar 

  71. Fischbach, C. et al. Engineering tumors with 3D scaffolds. Nature Methods 4, 855–860 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Torrance, C. J., Agrawal, V., Vogelstein, B. & Kinzler, K. W. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nature Biotechnol. 19, 940–945 (2001).

    Article  CAS  Google Scholar 

  75. Janes, K. A. & Yaffe, M. B. Data-driven modelling of signal-transduction networks. Nature Rev. Mol. Cell Biol. 7, 820–828 (2006).

    Article  CAS  Google Scholar 

  76. Sachs, K., Gifford, D., Jaakkola, T., Sorger, P. & Lauffenburger, D. A. Bayesian network approach to cell signaling pathway modeling. Sci. STKE PE38 (2002).

  77. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, X., Zhou, X. & Wong, S. T. Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy. IEEE Trans. Biomed. Eng. 53, 762–766 (2006).

    Article  PubMed  Google Scholar 

  79. Neumann, B. et al. High-throughput RNAi screening by time-lapse imaging of live human cells. Nature Methods 3, 385–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Faivre, S., Kroemer, G. & Raymond, E. Current development of mTOR inhibitors as anticancer agents. Nature Rev. Drug Discov. 5, 671–688 (2006).

    Article  CAS  Google Scholar 

  81. Koehn, F. E. & Carter, G. T. The evolving role of natural products in drug discovery. Nature Rev. Drug Discov. 4, 206–220 (2005).

    Article  CAS  Google Scholar 

  82. Terstappen, G. C., Schlupen, C., Raggiaschi, R. & Gaviraghi, G. Target deconvolution strategies in drug discovery. Nature Rev. Drug Discov. 6, 891–903 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Feng or Timothy J. Mitchison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Multiplexing

A process by which many single-output assays are carried out in parallel.

Gene signature

A small subset of gene products (mRNA or protein) that are consistently upregulated or downregulated in certain disease states or following treatment with known drugs. The gene signatures can be used to mine expression profiling data for compound or disease association, or applied directly in higher-throughput detection methods, such as the quantitative polymerase chain reaction.

iTRAQ

(Isobaric tag for relative and absolute quantitation). A technique that uses isotope-coded covalent tags to quantify protein from different sources in one single mass spectrometry experiment.

High-content assay

An automated fluorescence microscopy-based assay that measures many parameters of cellular marker intensity and morphology pertaining to compound activity and toxicity.

Unsupervised clustering

A method used in machine learning to determine how data are organized without using predetermined training data.

Kolmogorov–Smirnov score

The minimum difference between the empirical distribution function of the sample and the cumulative distribution function of the reference.

Support vector machine

(SVM). A supervised learning algorithm, which is used for classification. An SVM constructs a separating hyperplane to maximize the difference between the treated and control cell data sets.

Factor analysis

A statistical method that explains the variability of observed variables in terms of reduced numbers of unobserved variables called common factors. The observed variables are modelled as linear combinations of the factors, plus 'error'. The factors often carry more interpretable meaning than the observed variables themselves.

Principal component analysis

(PCA). A data transformation method that is used to reduce multidimensional data sets to lower dimensions for analysis. PCA can reveal the internal structure of the data in a way that best explains the variance in the data.

Structure–activity relationship

A correlation constructed between the features of chemical structures in a set of candidate compounds and parameters of biological activity, such as potency, selectivity and toxicity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Mitchison, T., Bender, A. et al. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat Rev Drug Discov 8, 567–578 (2009). https://doi.org/10.1038/nrd2876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing