Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cellular assays as portals to seven-transmembrane receptor-based drug discovery

Abstract

As technology advances to the point at which various behaviours of seven-transmembrane (7TM) receptors (also known as G protein-coupled receptors (GPCRs)) can be observed individually, it is clear that, rather than being 'on–off' switches, 7TM receptors are more akin to 'microprocessors' of information. This has introduced the phenomenon of functional selectivity, whereby certain ligands initiate only portions of the signalling mechanisms mediated by a given receptor, which has opened new horizons for drug discovery. The need to discover new 7TM receptor–ligand behaviours and quantify the effect of the drug on these complex systems, to guide medicinal chemistry, puts the pharmacological assay into the spotlight. This Perspective outlines the return to whole-system assays from reductionist recombinant systems, and discusses how the efficacy of a drug is linked to the particular assay used to observe its effects. It also highlights how these new assays are adding value to the drug discovery process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantification of drug activity through real-time observation of effect.
Figure 2: Receptor species monitored with different assay formats.
Figure 3: Increased texture of response with increased probes of receptor function.
Figure 4: The effect of cellular context on the responses to MAPK14 inhibitors.
Figure 5: Enhanced receptor desensitization assay through co-transfection with GRK2 and β-arrestin.

Similar content being viewed by others

References

  1. Black, J. W., Duncan, W. A. & Shanks, R. G. Comparison of some properties of pronethalol and propranolol. Br. J. Pharmacol. Chemo. 25, 577–591 (1965).

    CAS  Google Scholar 

  2. Azzi, M. et al. β-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G-protein-coupled receptors. Proc. Natl Acad. Sci. USA 100, 11406–11411 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Costa, T. & Herz, A. Antagonists with negative intrinsic activity at δ-opioid receptors coupled to GTP-binding proteins. Proc. Natl Acad. Sci. 86, 7321–7325 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kenakin, T. P. Efficacy as a vector: the prevalence and paucity of inverse agonism. Mol. Pharmacol. 65, 2–11 (2004).

    CAS  PubMed  Google Scholar 

  5. Metra, M., Cas, L. D., di Lenarda, A. & Poole-Wilson, P. Beta-blockers in hear failure: Are pharmacological differences clinically important? Heart Fail. Rev. 9, 123–130 (2005).

    Google Scholar 

  6. Wisler, J. W. et al. A unique mechanism of β-blocker action: carvedilol stimulates b-arrestin signaling. Proc. Natl Acad. Sci. USA 104, 16657–16662 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Galandrin, S. & Bouvier, M. Distinct signaling profiles of β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol. Pharmacol. 70, 1575–1584 (2006).

    CAS  PubMed  Google Scholar 

  8. Holmstedt, B. & Liljestrand, G. Readings in Pharmacology (Raven Press, New York, 1981).

    Google Scholar 

  9. Paton, W. D. M. On becoming a pharmacologist. Ann. Rev. Pharmacol. Toxicol. 26, 1–22 (1986).

    CAS  Google Scholar 

  10. Vane, J. R. The second Gaddum memorial lecture: The release and fate of vaso-active hormones in the circulation. Br. J. Pharmacol. 35, 209–242 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Parsons, M. E. & Ganellin, C. R. Histamine and its receptors. Br. J. Pharmacol. 147, S127–S135 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kenakin, T. P. The Pharmacologic Analysis of Drug Receptor Interaction 3rd edn 1–491 (Lippincott-Raven, New York, 1987).

    Google Scholar 

  13. Kenakin, T. P. & Beek, D. Self-cancellation of drug properties as a mode of organ selectivity: the antimuscarinic effects of ambenonium. J. Pharmacol. Exp. Ther. 232, 732–740 (1985).

    CAS  PubMed  Google Scholar 

  14. Litschig, S. et al. CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol. Pharmacol. 55, 453–461 (1999).

    CAS  PubMed  Google Scholar 

  15. Watson, C., Jenkinson, S., Kazmierski, W. & Kenakin, T. P. The CCR5 receptor-based mechanism of action of 873140, a potent allosteric non-competitive HIV entry-inhibitor. Mol. Pharmacol. 67, 1268–1282 (2005).

    CAS  PubMed  Google Scholar 

  16. Maeda, K. et al. Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J. Virol. 78, 8654–8662 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kenakin, T. P. G-protein coupled receptors as allosteric machines. Recept. Channels 10, 51–60 (2004).

    CAS  PubMed  Google Scholar 

  18. Hall, D. A. Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol. Pharmacol. 58, 1412–1423 (2000).

    CAS  PubMed  Google Scholar 

  19. Williams, M. in Comprehensive Medicinal Chemistry 2nd edn (ed. Moos, W. H) 265–288 (Elsevier, Oxford, 2007).

    Google Scholar 

  20. Hay, D. L. Christopoulos, G. Christopoulos, A. & Sexton, P. M. Amylin receptors: molecular composition and pharmacology. Biochem. Soc. Trans. 32, 865–867 (2004).

    CAS  PubMed  Google Scholar 

  21. Udawela, M. et al. Distinct receptor activity-modifying protein domains differentially modulate interaction with calcitonin receptors. Mol. Pharm. 69, 1984–1989 (2006).

    CAS  Google Scholar 

  22. Hay, D. L., Poyner, D. R. & Sexton, P. M. GPCR modulation by RAMPS. Pharmacol. Ther. 109, 173–197 (2006).

    CAS  PubMed  Google Scholar 

  23. Smart, D., Coppell, A., Rossant, C., Hall, M. & McKnight, A. T. Characterization using microphysiometry of CRF receptor pharmacology. Eur. J. Pharmacol. 379, 229–235 (1999).

    CAS  PubMed  Google Scholar 

  24. Fraunfelder, H. et al. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Google Scholar 

  25. Hilser, V. J., Garcia-Moreno, B., Oas, T. G., Kapp, G. & Whitten, S. T. A statistical thermodynamic model of the protein ensemble. Chem. Rev. 106, 1545–1558 (2006).

    CAS  PubMed  Google Scholar 

  26. Hilser, V. J. & Thompson, E. B. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl Acad. Sci. USA 104, 8311–8315 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, J. et al. Intrinsic disorder in transcription factors. Biochemistry 45, 6873–6888 (2006).

    CAS  PubMed  Google Scholar 

  28. Onaran, H. O. & Costa, T. Agonist efficacy and allosteric models of receptor action. Ann. N.Y. Acad. Sci. 812, 98–115 (1997).

    CAS  PubMed  Google Scholar 

  29. Onaran, H. O., Scheer, A., Cotecchia, S. & Costa, T. in The Pharmacology of Functional, Biochemical, and Recombinant Systems Handbook of Experimental Pharmacology Vol. 148 (eds Kenakin, T. P. & Angus, J.A.) 217–280 (Springer, Heidelberg, 2000).

    Google Scholar 

  30. Kenakin, T. P. & Onaran, O. The ligand paradox between affinity and efficacy: can you be there and not make a difference? Trends Pharmacol. Sci. 23, 275–280 (2002).

    CAS  PubMed  Google Scholar 

  31. Kenakin, T. P. Efficacy at G protein-coupled receptors. Nature Rev. Drug Discov. 1, 103–109 (2002).

    CAS  Google Scholar 

  32. Burgen, A. S. V. Conformational changes and drug action. Fed. Proc. 40, 2723–2728 (1981).

    CAS  PubMed  Google Scholar 

  33. Gether, U. et al. Fluorescent labeling of purified β2-adrenergic receptor: evidence for ligand specific conformational changes. J. Biol. Chem. 270, 28268–28275 (1995).

    CAS  PubMed  Google Scholar 

  34. Ghanouni, P. et al. Functionally different agonists produce distinct conformations in G-protein coupling domains of the β2-adrenergic receptor. J. Biol. Chem. 276, 24433–24436 (2001).

    CAS  PubMed  Google Scholar 

  35. Hruby, V. J. & Tollin, G. Plasmon-waveguide resonance (PWR) spectroscopy for directly viewing rates of GPCR/G-protein interactions and quantifying affinities. Curr. Opin. Pharmacol. 7, 507–514 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Palanche, T. et al. The neurokinin A receptor activates calcium and cAMP responses through distinct conformational states. J. Biol. Chem. 276, 34853–34861 (2001).

    CAS  PubMed  Google Scholar 

  37. Swaminath, G. et al. Sequential binding of agonists to the β 2 adrenoceptor: kinetic evidence for intermediate conformational states. J. Biol. Chem. 279, 686–691 (2004).

    CAS  PubMed  Google Scholar 

  38. Lefkowitz, R. J. & Shenoy, S. K. Transduction of receptor signals by β-arrestins. Science 308, 512–517 (2005).

    CAS  PubMed  Google Scholar 

  39. Luttrell, L. M. Composition and function of G protein-coupled receptor signalsomes controlling mitogen-activated protein kinase activity. J. Mol. Neurosci. 26, 253–263 (2005).

    CAS  PubMed  Google Scholar 

  40. Wang, Q. & Limbird, L. E. Regulation of alpha2AR trafficking and signaling by interacting proteins. Biochem. Pharmacol. 73, 1135–1145 (2007).

    CAS  PubMed  Google Scholar 

  41. Brady, A. E. & Limbird, L. E. G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell. Signal. 14, 297–309 (2002).

    CAS  PubMed  Google Scholar 

  42. Roettger, B. F. et al. Antagonist-stimulated internalization of the G protein-coupled cholecystokinin receptor Mol. Pharmacol. 51, 357–362 (1997).

    CAS  PubMed  Google Scholar 

  43. Kenakin, T. P. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol. Sci. 24, 346–354 (2003).

    CAS  PubMed  Google Scholar 

  44. Gray, J. A. & Roth, B. L. Paradoxical trafficking and regulation of 5-HT2A receptors by agonists and antagonists. Brain Res. Bulletin 56, 441–451 (2001).

    CAS  Google Scholar 

  45. Kenakin, T. P. New concepts in drug discovery: collateral efficacy and permissive antagonism. Nature Rev. Drug Discov. 4, 919–927 (2005).

    CAS  Google Scholar 

  46. Kunkel, E. J. et al. Rapid structure-activity and selectivity analysis of kinase inhibitors by BioMap analysis in complex human primary cell-based models. Assay Drug. Dev. Technol. 2, 431–441 (2004).

    CAS  PubMed  Google Scholar 

  47. Stephenson, R. P. A modification of receptor theory. Br. J. Pharmacol. 11, 379–393 1956 (1956).

    CAS  Google Scholar 

  48. Kenakin, T. P. Agonist-receptor efficacy II: agonist-trafficking of receptor signals. Trends Pharmacol. Sci. 16, 232–238 (1995).

    CAS  PubMed  Google Scholar 

  49. Kenakin, T. P. Efficacy at G protein coupled receptors. Ann. Rev. Pharmacol. Toxicol. 42, 349–379 (2002).

    CAS  Google Scholar 

  50. Violin, J. D. & Lefkowitz, R. J. β-Arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28, 416–422 (2007).

    CAS  PubMed  Google Scholar 

  51. Mailman, R. B. GPCR functional selectivity has therapeutic impact. Trends Pharmacol. Sci. 28, 390–396 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kenakin, T. P. Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol. Sci. 28, 407–415 (2007).

    CAS  PubMed  Google Scholar 

  53. Hermans, E. Biochemical and pharmacological control of the multiplicity of coupling at G-protein receptors. Pharmacol. Ther. 99, 25–44 (2003).

    CAS  PubMed  Google Scholar 

  54. Perez, D. M. & Karnick, S. S. Multiple signaling states of G-protein coupled receptors Pharmacol. Rev. 57, 147–161 (2005).

    CAS  PubMed  Google Scholar 

  55. Watson, C. et al. The use of stimulus-biased assay systems to detect agonist-specific receptor active states: implications for the trafficking of receptor stimulus by agonists. Mol. Pharmacol. 58, 1230–1238 (2000).

    CAS  PubMed  Google Scholar 

  56. Chambers, C. et al. Measuring intracellular calcium fluxes in high throughput mode. Comb. Chem. High Throughput Screen. 6, 355 (2003).

    CAS  PubMed  Google Scholar 

  57. Williams, C. cAMP detection methods in HTS: selecting the best from the rest. Nature Rev. Drug Discov. 3, 125–135 (2004).

    CAS  Google Scholar 

  58. Milligan, G. High-content assays for ligand regulation of G-protein coupled receptors. Drug Disc. Today 8, 579–585 (2003).

    CAS  Google Scholar 

  59. Lefkowitz, R. J. & Whalen, E. J. β-arrestins: traffic cops of cell signaling. Curr. Opin. Cell Biol. 16, 162–168 (2004).

    CAS  PubMed  Google Scholar 

  60. Fredriksson, R. & Schioth, H. B. The repertoire of G-protein receptors in fully sequenced genomes. Mol. Pharmacol. 67, 1414–1425 (2005).

    CAS  PubMed  Google Scholar 

  61. Oakley, R. H. et al. The cellular distribution of fluorescently labeled arrestins provides a robust, sensitive, and universal assay for screening G-protein coupled receptors. Assay Drug Dev. Technol. 1, 21–30 (2002).

    CAS  PubMed  Google Scholar 

  62. Ghosh, R. N. et al. Quantitative cell-based high content screening for vasopressin receptor agonists using Transfluor technology. J. Biomol. Screen 10, 476–484 (2005).

    CAS  PubMed  Google Scholar 

  63. Ross, D. A. et al. Mulitplexed assays by high-content imaging for assessment of GPCR activity. J. Biomol. Screen 13, 449–455 (2008).

    CAS  PubMed  Google Scholar 

  64. Milligan, G. Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G-protein coupled receptors. Eur. J. Pharm. Sci. 21, 397–405 (2004).

    CAS  PubMed  Google Scholar 

  65. Hamdan, F. F., Audet, M., Garneau, P., Pelletier, J. & Bouvier, M. High-throughput screening of G-protein-coupled receptor antagonists using bioluminescence resonance energy transfer 1-based β-arrestin 2 recruitment assay. J. Biomol. Screen 10, 463–475 (2005).

    CAS  PubMed  Google Scholar 

  66. Olson, K. R., Eglen, R. M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev. Technol. 5, 137–144 (2007).

    CAS  PubMed  Google Scholar 

  67. Zhao, X. et al. A homogeneous enzyme fragment complementation-based b-arrestin translocation assay for high-throughput screening of G-protein-coupled receptors. J. Biomol. Screen 13, 737–747 (2008).

    CAS  PubMed  Google Scholar 

  68. Barnea, G. et al. The genetic design of signaling cascades to record receptor activation. Proc. Natl Acad. Sci. USA 105, 64–69 (2008).

    CAS  PubMed  Google Scholar 

  69. Verkaar, F. et al. G-protein independent cell-based assays for drug discovery on seven-transmembrane receptors. Biotechnol. Ann. Rev. 14, 253–274 (2008).

    CAS  Google Scholar 

  70. Bieri, C., Ernst, O. P., Heyse, S., Hofman, K. P. & Vogel, H. Micro-patterned immobilization of G-protein activation. Nature Biotech. 17, 1105–1108 (1999).

    CAS  Google Scholar 

  71. Boozer, C., Kim, G., Cong, S., Guan, H. & Londergan, T. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr. Opin. Biotechnol. 17, 400–405 (2006).

    CAS  PubMed  Google Scholar 

  72. McDonnell, J. M. Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition Curr. Opin. Chem. Biol. 5, 572–577 (2001).

    CAS  PubMed  Google Scholar 

  73. Leifert, W. R., Aloia, A. L., Bocco, O., Glatz, R. V. & McMurchie, E. J. G-protein coupled receptors in drug discovery: non-sizing using cell free technologies and molecule biology approaches. J. Biomol. Screen 10, 765–779 (2005).

    CAS  PubMed  Google Scholar 

  74. Tollin, G., Zdzislw, S. & Hruby, V. J. Techniques: plasmon-waveguide resonance (PWR) spectroscopy as a tool to study ligand-GPCR interactions. Trends Pharmacol. Sci. 24, 655–659 (2003).

    CAS  PubMed  Google Scholar 

  75. Devanathan, S., Yao, Z., Salamon, Z., Kobilka, B. & Tollin, G. Plasmon-waveguide resonance studies of ligand binding to the human β2-adrenergic receptor. Biochem. 43, 3280–3288 (2004).

    CAS  Google Scholar 

  76. Salamon, Z. et al. Plasmon resonance studies of agonist/antagonist binding to the human δ-opioid receptor: new structural insights into receptor-ligand interactions. Biophys. J. 79, 2463–2474 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Salamon, Z., Hruby, V. J., Tollin, G. & Cowell, S. M. Binding of agonists, antagonists and inverse agonists to the human δ-opioid receptor produces distinctly different conformational states distinguishable by plasmon-waveguid resonance spectroscopy. J. Pept. Res. 60, 322–328 (2002).

    CAS  PubMed  Google Scholar 

  78. Fang, Y., Ferrie, A. M., Fontaine, N., Mauro, J. & Balikrishnan, J. Resonant waveguide grating biosensors for living cell sensing. Biophys. J. 91, 1925–1940 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu, Z., Jiang, G., Blume-Jensen, P. & Hunter, T. Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol. Cell Biol. 21, 4016–4031 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fang, Y., Ferrie, A. M., Fontaine, N. H. & Yuen, P. K. Characteristics of dynamic mass redistribution of EGF receptor signaling in living cells measured with label free optical biosensors. Anal. Chem. 77, 5720–5725 (2005).

    CAS  PubMed  Google Scholar 

  81. Fang, Y., Li, G. & Peng, J. Optical biosensor provides insights for bradykinin B2 receptor signaling in A431 cells. FEBS Lett. 579, 6365–6374 (2005).

    CAS  PubMed  Google Scholar 

  82. Fang, Y. Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev. Technol. 4, 583–595 (2006).

    CAS  PubMed  Google Scholar 

  83. Cunningham, B. T. et al. Label free assays on the BIND system. J. Biomolec. Screen. 9, 481–490 (2004).

    CAS  Google Scholar 

  84. Yu, N. et al. Real-time monitoring of morphological changes in living cells by electronic cell sensor assays: an approach to study G-protein coupled receptors. Anal. Chem. 78, 35–43 (2006).

    CAS  PubMed  Google Scholar 

  85. Verdonk, E. et al. Cellular dielectric spectroscopy: a label-free comprehensive platform for functional evaluation of endogenous receptors. Assay Drug Dev. Technol. 4, 609–619 (2006).

    CAS  PubMed  Google Scholar 

  86. McGuinness, R. Impedance-based cellular assay technologies: recent advances. Curr. Opin. Pharmacol. 7, 535–540 (2007).

    CAS  PubMed  Google Scholar 

  87. Peter, M. F. et al. Evaluation of cellular dielectric spectroscopy, a whole-cell label-free technology for drug discovery on Gi-coupled GPCRs. J. Biomol. Screen 12, 312–319 (2007).

    Google Scholar 

  88. Shiau, A. K., Massari, M. E. & Ozbal, C. C. Back to basics: label-free technologies for small molecule screening. Comb. Chem. High Throughput Screen. 11, 231–237 (2008).

    CAS  PubMed  Google Scholar 

  89. Martin, J. High-throughput optical label-free in early drug discovery: from biomolecular interactions to cellular phenotypes. Amer. Drug Disc. 3, 12–20 (2008).

    Google Scholar 

  90. Denner, P., Schmalowsky, J. & Prechtl, S. High-content analysis in preclinical drug discovery. Comb. Chem. High Throughput Screen. 11, 216–230 (2008).

    CAS  PubMed  Google Scholar 

  91. Groer, C. E. et al. An opioid agonist that does not induce μ-opioid receptor — arrestin interactions or receptor internalization. Mol. Pharmacol. 71, 549–557 (2007).

    CAS  PubMed  Google Scholar 

  92. Kenakin, T. P. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol. Sci. 24, 346–354 (2003).

    CAS  PubMed  Google Scholar 

  93. Aramori, I. et al. Molecular mechanism of desensitization of the chemokine receptor CCR-5: receptor signaling and internalization are dissociable from its role as an HIV-1 co-receptor. EMBO J. 16, 4606–4616 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kost, T. A., Condreay, J. P., Ames, R. A., Rees, S. & Romanos, M. A. Implementation of BacMam virus gene delivery technology in a drug discovery setting. Drug Disc. Today 12, 396–403 (2007).

    CAS  Google Scholar 

  95. Cawkill, D. & Eaglestone, S. S. Evolution of cell-based reagent provision. Drug Disc. Today 12, 820–825 (2007).

    CAS  Google Scholar 

  96. Rees, S. & Wise, A. The industrialization of cellular screening. Expert Opin. Drug Disc. 3, 715–723 (2008).

    CAS  Google Scholar 

  97. Reiter, E. & Lefkowitz, R. J. GRKs and b-arrestins: roles in receptort silencing and signaling. Trends Endocrinol. Metab. 17, 159–165 (2006).

    CAS  PubMed  Google Scholar 

  98. Kim, J. et al. Functional antagonism of different G protein-coupled receptor kinases for β-arrestin-mediated angiotensin II receptor signaling. Proc. Natl Acad. Sci. USA 102, 1442–1447 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ren, X.-R. et al. Different G protein-coupled receptor kinases govern G protein and β-arrestin-mediated signaling of V2 vasopressin receptor. Proc. Natl Acad. Sci. USA 102, 1448–1453 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenakin, T. Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nat Rev Drug Discov 8, 617–626 (2009). https://doi.org/10.1038/nrd2838

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing