Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted therapy for brain tumours

Key Points

  • Brain tumours represent a heterogeneous group of neoplasms, the most common being astrocytomas. Astrocytomas differ in their spectrum of behaviour, from those which are relatively benign to the most malignant, glioblastoma multiforme.

  • Due to their micro-environment within the central nervous system, brain tumours are well isolated from systemic circulation. This occurs because of the presence of the blood–brain barrier, the blood–cerebrospinal fluid barrier, and blood–tumour barrier. As such, systemic therapy of brain tumours has been unsuccessful.

  • The development of biodegradable polymers has changed the therapy of patients with brain tumours. Local and controlled delivery of antineoplastic agents such as Gliadel has overcome the inherent obstacles presented by the barriers of the central nervous system.

  • New advances in technology, gene therapy and immunology are likely to have a significant impact on the treatment of malignant brain tumours in the near future.

Abstract

Although previously considered untreatable, brain tumours no longer carry the same prognosis as they did even a decade ago. Recent advances in drug delivery to the central nervous system have not only bypassed physiological constraints such as the blood–brain barrier, but have, in fact, changed the course of treatment for patients with malignant brain tumours. The creation of targeted therapies, which spare normal tissue and destroy tumour cells, is changing the field of neuro-oncology. In this article, we review recent developments in the delivery of drugs to tumours of the central nervous system, discuss current trends and directions in the development of novel drugs and delivery systems, and present new and cutting-edge strategies for overcoming the challenges ahead.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development and progression of astrocytic brain tumours.
Figure 2: The blood–brain barrier.
Figure 3: Chemotherapeutic drugs and experimental neurological agents.
Figure 4: Implantation of Gliadel.

Similar content being viewed by others

References

  1. Mohan, D. S. et al. Outcome in elderly patients undergoing definitive surgery and radiation therapy for supratentorial glioblastoma multiforme at a tertiary care institution. Int. J. Radiat. Oncol. Biol. Phys. 42, 981–987 (1998).

    CAS  PubMed  Google Scholar 

  2. Barker, F. G. et al. Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery 42, 709–920; discussion 720–723 (1998).

    PubMed  Google Scholar 

  3. Roose, T., Netti, P. A., Munn, L. L., Boucher, Y. & Jain, R. K. Solid stress generated by spheroid growth estimated using a linear poroelasticity model small star, filled. Microvasc. Res. 66, 204–212 (2003).

    PubMed  Google Scholar 

  4. Kornblith, P. L. & Walker, M. Chemotherapy for malignant gliomas. J. Neurosurg. 68, 1–17 (1988).

    CAS  PubMed  Google Scholar 

  5. Albrecht, K. W. et al. High concentration of Daunorubicin and Daunorubicinol in human malignant astrocytomas after systemic administration of liposomal Daunorubicin. J. Neurooncol. 53, 267–271 (2001).

    CAS  PubMed  Google Scholar 

  6. Koukourakis, M. I. et al. High intratumoural accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumours. Br. J. Cancer 83, 1281–1286 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fabel, K. et al. Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer 92, 1936–1942 (2001).

    CAS  PubMed  Google Scholar 

  8. Lippens, R. J. Liposomal daunorubicin (DaunoXome) in children with recurrent or progressive brain tumors. Pediatr. Hematol. Oncol. 16, 131–139 (1999).

    CAS  PubMed  Google Scholar 

  9. Kreuter, J., Alyautdin, R. N., Kharkevich, D. A. & Ivanov, A. A. Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 674, 171–174 (1995).

    CAS  PubMed  Google Scholar 

  10. Schroeder, U., Sommerfeld, P., Ulrich, S. & Sabel, B. A. Nanoparticle technology for delivery of drugs across the blood–brain barrier. J. Pharm. Sci. 87, 1305–1307 (1998).

    CAS  PubMed  Google Scholar 

  11. Alyautdin, R. N. et al. Delivery of loperamide across the blood–brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res. 14, 325–328 (1997).

    CAS  PubMed  Google Scholar 

  12. Alyautdin, R. N. et al. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J. Microencapsul. 15, 67–74 (1998).

    CAS  PubMed  Google Scholar 

  13. Friese, A., Seiller, E., Quack, G., Lorenz, B. & Kreuter, J. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur. J. Pharm. Biopharm. 49, 103–109 (2000).

    CAS  PubMed  Google Scholar 

  14. Gulyaev, A. E. et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm. Res. 16, 1564–1569 (1999).

    CAS  PubMed  Google Scholar 

  15. Rapoport, S. I. Advances in osmotic opening of the blood-brain barrier to enhance CNS chemotherapy. Expert Opin. Investig. Drugs. 10, 1809–1818 (2001).

    CAS  PubMed  Google Scholar 

  16. Zylber-Katz, E. et al. Pharmacokinetics of methotrexate in cerebrospinal fluid and serum after osmotic blood-brain barrier disruption in patients with brain lymphoma. Clin. Pharmacol. Ther. 67, 631–641 (2000).

    CAS  PubMed  Google Scholar 

  17. Rapoport, S. I. Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cell. Mol. Neurobiol. 20, 217–230 (2000).

    CAS  PubMed  Google Scholar 

  18. Morikawa, N. et al. Dose-related increases in cerebrospinal fluid concentrations of methotrexate in a postoperative patient with glioblastoma. Ann. Pharmacother. 33, 952–956 (1999).

    CAS  PubMed  Google Scholar 

  19. Kobrinsky, N. L. et al. Etoposide with or without mannitol for the treatment of recurrent or primarily unresponsive brain tumors: a Children's Cancer Group Study, CCG-9881. J. Neurooncol. 45, 47–54 (1999).

    CAS  PubMed  Google Scholar 

  20. Prados, M. D. et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro-oncology 5, 96–103 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Boiardi, A. et al. Locally delivered chemotherapy and repeated surgery can improve survival in glioblastoma patients. Ital. J. Neurol. Sci. 20, 43–48 (1999).

    CAS  PubMed  Google Scholar 

  22. Morantz, R. A., Kimler, B. F., Vats, T. S. & Henderson, S. D. Bleomycin and brain tumors. A review. J. Neurooncol. 1, 249–255 (1983).

    CAS  PubMed  Google Scholar 

  23. Patchell, R. A. et al. A phase I trial of continuously infused intratumoral bleomycin for the treatment of recurrent glioblastoma multiforme. J. Neurooncol. 60, 37–42 (2002).

    PubMed  Google Scholar 

  24. Voulgaris, S. et al. Intratumoral doxorubicin in patients with malignant brain gliomas. Am. J. Clin. Oncol. 25, 60–64 (2002).

    PubMed  Google Scholar 

  25. Huang, Y., Hayes, R. L., Wertheim, S., Arbit, E. & Scheff, R. Treatment of refractory recurrent malignant glioma with adoptive cellular immunotherapy: a case report. Crit. Rev. Oncol. Hematol. 39, 17–23 (2001).

    CAS  PubMed  Google Scholar 

  26. Boiardi, A. et al. Local immunotherapy (β-IFN) and systemic chemotherapy in primary glial tumors. Ital. J. Neurol. Sci. 12, 163–168 (1991).

    CAS  PubMed  Google Scholar 

  27. Giussani, C. et al. Local intracerebral delivery of endogenous inhibitors by osmotic minipumps effectively suppresses glioma growth in vivo. Cancer Res. 63, 2499–2505 (2003).

    CAS  PubMed  Google Scholar 

  28. Husain, S. R. & Puri, R. K. Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: from bench to bedside. J. Neurooncol. 65, 37–48 (2003).

    PubMed  Google Scholar 

  29. Kunwar, S. Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing phase 1 studies. Acta Neurochir. Suppl. 88, 105–111 (2003).

    CAS  PubMed  Google Scholar 

  30. Mardor, Y. et al. Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res. 61, 4971–4973 (2001).

    CAS  PubMed  Google Scholar 

  31. Lidar, Z. et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II study. J. Neurosurg. 100, 472–479 (2004).

    CAS  PubMed  Google Scholar 

  32. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976). The original article describing polymers and their potential use in clinical applications.

    CAS  PubMed  Google Scholar 

  33. Leong, K. W., Brott, B. C. & Langer, R. Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. J. Biomed. Mater. Res. 19, 941–955 (1985).

    CAS  PubMed  Google Scholar 

  34. Leong, K. W., D'Amore, P. D., Marletta, M. & Langer, R. Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity. J. Biomed. Mater. Res. 20, 51–64 (1986).

    CAS  PubMed  Google Scholar 

  35. Domb, A., Bogdansky, S. & A., O. Controlled delivery of water soluble and hydrolytically unstable anti-cancer drugs for polymeric implants. Polymer Prepr. 32, 219–222 (1991).

    CAS  Google Scholar 

  36. Tabata, Y., Gutta, S. & Langer, R. Controlled delivery systems for proteins using polyanhydride microspheres. Pharm. Res. 10, 487–496 (1993).

    CAS  PubMed  Google Scholar 

  37. Olivi, A. et al. Interstitial delivery of carboplatin via biodegradable polymers is effective against experimental glioma in the rat. Cancer Chemother. Pharmacol. 39, 90–96 (1996).

    CAS  PubMed  Google Scholar 

  38. Menei, P. et al. Drug targeting into the central nervous system by stereotactic implantation of biodegradable microspheres. Neurosurgery 34, 1058–1064; discussion 1064 (1994).

    CAS  PubMed  Google Scholar 

  39. Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994).

    CAS  PubMed  Google Scholar 

  40. Gabizon, A. A. Liposomal anthracyclines. Hematol. Oncol. Clin. North. Am. 8, 431–450 (1994).

    CAS  PubMed  Google Scholar 

  41. Golumbek, P. T. et al. Controlled release, biodegradable cytokine depots: a new approach in cancer vaccine design. Cancer Res. 53, 5841–5844 (1993).

    CAS  PubMed  Google Scholar 

  42. Menei, P. et al. Stereotaxic implantation of 5-fluorouracil-releasing microspheres in malignant glioma. Cancer 100, 405–410 (2004).

    CAS  PubMed  Google Scholar 

  43. Loo, T. L., Dion, R. L., Dixon, R. L. & Rall, D. P. The antitumor agent, 1,3-bis(2-choloethyl)-1-nitrosourea. J. Pharm. Sci. 55, 492–497 (1966).

    CAS  Google Scholar 

  44. Green, S. B. et al. Comparisons of carmustine, procarbazine, and high-dose methylprednisolone as additions to surgery and radiotherapy for the treatment of malignant glioma. Cancer Treat. Rep. 67, 121–132 (1983).

    CAS  PubMed  Google Scholar 

  45. Walker, M. D. et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N. Engl. J. Med. 303, 1323–1329 (1980).

    CAS  PubMed  Google Scholar 

  46. Grossman, S. A. et al. The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J. Neurosurg. 76, 640–647 (1992).

    CAS  PubMed  Google Scholar 

  47. Yang, M. B., Tamargo, R. J. & Brem, H. Controlled delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea from ethylene-vinyl acetate copolymer. Cancer Res. 49, 5103–5107 (1989).

    CAS  PubMed  Google Scholar 

  48. Wu, M. P., Tamada, J. A., Brem, H. & Langer, R. In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy. J. Biomed Mater. Res. 28, 387–395 (1994).

    CAS  PubMed  Google Scholar 

  49. Tamargo, R. J. et al. Interstitial chemotherapy of the 9L gliosarcoma: controlled release polymers for drug delivery in the brain. Cancer Res. 53, 329–333 (1993).

    CAS  PubMed  Google Scholar 

  50. Brem, H. et al. Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain. J. Neurosurg. 80, 283–290 (1994).

    CAS  PubMed  Google Scholar 

  51. Brem, H. et al. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J. Neurosurg. 74, 441–446 (1991). One of the first papers to describe the efficacy of Gliadel against recurrent maligant brain tumors.

    CAS  PubMed  Google Scholar 

  52. Brem, H. et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet 345, 1008–1012 (1995).

    CAS  PubMed  Google Scholar 

  53. Westphal, M. et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol. 5, 79–88 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Olivi, A. et al. Dose escalation of carmustine in surgically implanted polymers in patients with recurrent malignant glioma: a New Approaches to Brain Tumor Therapy CNS Consortium trial. J. Clin. Oncol. 21, 1845–1849 (2003).

    CAS  PubMed  Google Scholar 

  55. Rhines, L. D. et al. O6-benzylguanine potentiates the antitumor effect of locally delivered carmustine against an intracranial rat glioma. Cancer Res. 60, 6307–6310 (2000).

    CAS  PubMed  Google Scholar 

  56. Laws, E. R., Jr., Morris, A. M. & Maartens, N. Gliadel for pituitary adenomas and craniopharyngiomas. Neurosurgery 53, 255–269; discussion 259–260 (2003).

    PubMed  Google Scholar 

  57. Ewend, M. G. et al. Local delivery of chemotherapy and concurrent external beam radiotherapy prolongs survival in metastatic brain tumor models. Cancer Res. 56, 5217–5223 (1996).

    CAS  PubMed  Google Scholar 

  58. Ewend, M. G., Brem, S., Gilbert, M., Goodkin, R. & Penar, P. Treating single brain metastasis with resection, placement of BCNU-polymer wafers, and radiation therapy. Am. Assoc. Neurol. Surgeons Toronto, Canada, 24–26 April 2001.

  59. Forsyth, P. et al. Phase II trial of docetaxel in patients with recurrent malignant glioma: a study of the National Cancer Institute of Canada Clinical Trials Group. Invest. New Drugs 14, 203–206 (1996).

    CAS  PubMed  Google Scholar 

  60. Freilich, R. J., Seidman, A. D. & DeAngelis, L. M. Central nervous system progression of metastatic breast cancer in patients treated with paclitaxel. Cancer 76, 232–236 (1995).

    CAS  PubMed  Google Scholar 

  61. Glantz, M. J., Chamberlain, M. C., Chang, S. M., Prados, M. D. & Cole, B. F. The role of paclitaxel in the treatment of primary and metastatic brain tumors. Semin. Radiat. Oncol. 9, 27–33 (1999).

    CAS  PubMed  Google Scholar 

  62. Walter, K. A. et al. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res. 54, 2207–2212 (1994).

    CAS  PubMed  Google Scholar 

  63. Li, K. W. et al. Polilactofate microspheres for Paclitaxel delivery to central nervous system malignancies. Clin. Cancer Res. 9, 3441–3447 (2003).

    CAS  PubMed  Google Scholar 

  64. Sampath, P. et al. Camptothecin analogs in malignant gliomas: comparative analysis and characterization. J. Neurosurg. 98, 570–577 (2003).

    CAS  PubMed  Google Scholar 

  65. Storm, P. B. et al. Polymer delivery of camptothecin against 9L gliosarcoma: release, distribution, and efficacy. J. Neurooncol. 56, 209–217 (2002).

    PubMed  Google Scholar 

  66. Weingart, J. D., Thompson, R. C., Tyler, B., Colvin, O. M. & Brem, H. Local delivery of the topoisomerase I inhibitor camptothecin sodium prolongs survival in the rat intracranial 9L gliosarcoma model. Int. J. Cancer. 62, 605–609 (1995).

    CAS  PubMed  Google Scholar 

  67. Tamargo, R. J., Bok, R. A. & Brem, H. Angiogenesis inhibition by minocycline. Cancer Res 51, 672–675 (1991).

    CAS  PubMed  Google Scholar 

  68. Weingart, J. D., Sipos, E. P. & Brem, H. The role of minocycline in the treatment of intracranial 9L glioma. J. Neurosurg. 82, 635–640 (1995).

    CAS  PubMed  Google Scholar 

  69. Santini, J. T., Jr. Cima, M. J. & Langer, R. A controlled-release microchip. Nature 397, 335–8 (1999). This article shows how a solid-state silicon chip could have the potential to deliver several drugs at different time points.

    CAS  PubMed  Google Scholar 

  70. Richards Grayson, A. C. et al. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nature Mater. 2, 767–772 (2003). Describes a biodegradable polymeric microchip that allows release of several drugs in vivo.

    Google Scholar 

  71. Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264, 569–571 (1994).

    CAS  PubMed  Google Scholar 

  72. Hynes, R. O. Integrins: a family of cell surface receptors. Cell 48, 549–554 (1987).

    CAS  PubMed  Google Scholar 

  73. Howe, A., Aplin, A. E., Alahari, S. K. & Juliano, R. L. Integrin signaling and cell growth control. Curr. Opin. Cell Biol. 10, 220–231 (1988).

    Google Scholar 

  74. Longhurst, C. M. & Jennings, L. K. Integrin-mediated signal transduction. Cell. Mol. Life Sci. 54, 514–526 (1998).

    CAS  PubMed  Google Scholar 

  75. Malik, R. K. Regulation of apoptosis by integrin receptors. J. Pediatr. Hematol. Oncol. 19, 541–545 (1997).

    CAS  PubMed  Google Scholar 

  76. Scatena, M. et al. NF-κB mediates αvβ3 integrin-induced endothelial cell survival. J. Cell Biol. 141, 1083–1093 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lesniak, M. S., Pai, S. I., Johns, D. & Pardoll, D. M. Targeted adenoviral gene delivery for gliomas. Am. Assoc. Neurol. Surgeons Chicago, Illinois, 3–5 April 2002.

  78. Lang, F. F. et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J. Clin. Oncol. 21, 2508–2518 (2003).

    CAS  PubMed  Google Scholar 

  79. Vecil, G. G. & Lang, F. F. Clinical trials of adenoviruses in brain tumors: a review of Ad-p53 and oncolytic adenoviruses. J. Neurooncol. 65, 237–246 (2003).

    PubMed  Google Scholar 

  80. Glick, R. P., Lichtor, T., Kim, T. S., Ilangovan, S. & Cohen, E. P. Fibroblasts genetically engineered to secrete cytokines suppress tumor growth and induce antitumor immunity to a murine glioma in vivo. Neurosurgery 36, 548–555 (1995).

    CAS  PubMed  Google Scholar 

  81. Glick, R. P., Lichtor, T., de Zoeten, E., Deshmukh, P. & Cohen, E. P. Prolongation of survival of mice with glioma treated with semiallogeneic fibroblasts secreting interleukin-2. Neurosurgery 45, 867–874 (1999).

    CAS  PubMed  Google Scholar 

  82. Lichtor, T. et al. Application of interleukin-2-secreting syngeneic/allogeneic fibroblasts in the treatment of primary and metastatic brain tumors. Cancer Gene Ther. 9, 464–469 (2002).

    CAS  PubMed  Google Scholar 

  83. Deshmukh, P., Glick, R. P., Lichtor, T., Moser, R. & Cohen, E. P. Immunogene therapy with interleukin-2-secreting fibroblasts for intracerebrally metastasizing breast cancer in mice. J. Neurosurg. 94, 287–292 (2001).

    CAS  PubMed  Google Scholar 

  84. Thompson, R. C. et al. Systemic and local paracrine cytokine therapies using transduced tumor cells are synergistic in treating intracranial tumors. J. Immunother. Emphasis Tumor Immunol. 19, 405–413 (1996).

    CAS  PubMed  Google Scholar 

  85. Lesniak, M. et al. Comparative analysis of paracrine immunotherapy in experimental brain tumors. Neurosurgical Focus 9, 1–6 (2000).

    Google Scholar 

  86. Lesniak, M. S., Tyler, B. M., Pardoll, D. M. & Brem, H. Gene therapy for experimental brain tumors using a xenogenic cell line engineered to secrete hIL-2. J. Neurooncol. 64, 155–160 (2003).

    PubMed  Google Scholar 

  87. Hanes, J. et al. Controlled local delivery of interleukin-2 by biodegradable polymers protects animals from experimental brain tumors and liver tumors. Pharm. Res. 18, 899–906 (2001).

    CAS  PubMed  Google Scholar 

  88. Sampath, P. et al. Paracrine immunotherapy with interleukin-2 and local chemotherapy is synergistic in the treatment of experimental brain tumors. Cancer Res. 59, 2107–2114 (1999).

    CAS  PubMed  Google Scholar 

  89. Rhines, L. D. et al. Local immunotherapy with interleukin-2 delivered from biodegradable polymer microspheres combined with interstitial chemotherapy: a novel treatment for experimental malignant glioma. Neurosurgery 52, 872–879; discussion 879–880 (2003).

    PubMed  Google Scholar 

Download references

Acknowledgements

The research presented in this work has been supported in part by the National Cooperative Drug Discovery Group of the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Under a licensing agreement between Guilford Pharmaceuticals and the Johns Hopkins University, H.B. is entitled to a share of royalty received by the University on sales of products described in this work. H.B. and the University own Guilford Pharmaceuticals stock, which is subject to certain restrictions under University policy. H.B. is also a paid consultant to Guilford Pharmaceuticals. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest polices.

Related links

Related links

DATABASES

Entrez Gene

ABCB1

ATP-binding cassette C1

bFGF

O6-methylguanine-DNA methyltransferase

VEGF

FURTHER INFORMATION

American Brain Tumor Association

Controlled Release Society

MIT Program in Polymer Science and Technology

National Academy of Engineering

Neurosurgery

Society for Biomaterials

Encyclopedia of Life Sciences

Brain cancers

Glossary

SURGICAL DEBULKING

A surgical procedure in which part of the tumour is removed, as opposed to the entire tumour.

BLOOD–BRAIN BARRIER

A state of physiological, metabolic and biochemical processes that distinguish the cerebral capillary endothelium from the endothelium of systemic organ systems. It is formed by tight junctions of cerebral capillary endothelial cells.

TRANSCYTOSIS

The transport of material across an epithelium by uptake on one face into a coated vesicle, which then can be transported to the opposite face in another vesicle.

PARENCHYMA

Tissue that constitutes the essential part of an organ, as contrasted with connective tissue and blood vessels.

ARTERIOVENOUS SHUNTS

A passage by which blood is directly diverted from the arterial side to the venous side.

VENOUS ANASTOMOSES

Communication between two or more veins forming a network of vessels.

LIPOSOMES

Synthetic, uniform, bilayer lipid membrane vesicles formed by emulsification of cell membranes in dilute salt solutions. Liposomes are being developed as an approach for drug delivery in which toxic drugs are 'wrapped' inside a liposome and tagged with an organ-specific antibody.

OMMAYA RESERVOIR

A device with a fluid reservoir implanted under the scalp with a catheter inside a ventricle. It allows for medication to be given directly to the cerebrospinal fluid and into the brain.

HAZARD RATIO

A summary of the difference between two survival curves, representing the reduction in the risk of death on treatment compared with control, during the period of follow up.

KARNOFSKY PERFORMANCE STATUS

A standard way of measuring the ability of cancer patients to perform ordinary tasks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesniak, M., Brem, H. Targeted therapy for brain tumours. Nat Rev Drug Discov 3, 499–508 (2004). https://doi.org/10.1038/nrd1414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing