Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Crystal structures of drugs: advances in determination, prediction and engineering

Key Points

  • The crystalline form of a drug affects properties such as its solubility, stability, dissolution rate, bioavailability and tabletability, and so understanding the crystalline state is crucial for many of the activities of the pharmaceutical industry.

  • This article first discusses the fundamental concepts of the crystalline state, focusing on those relevant to the properties of pharmaceutical crystals.

  • Methods for determination of the crystal structure of pharmaceutical crystals are then described. In particular, recent advances in the use of computational approaches in crystal structure solution and prediction are highlighted.

  • Finally, the potential of crystal engineering to design novel pharmaceutical compounds with desired physical and mechanical properties is reviewed.

Abstract

Most marketed pharmaceuticals consist of molecular crystals. The arrangement of the molecules in a crystal determines its physical properties and, in certain cases, its chemical properties, and so greatly influences the processing and formulation of solid pharmaceuticals, as well as key drug properties such as dissolution rate and stability. A thorough understanding of the relationships between physical structures and the properties of pharmaceutical solids is therefore important in selecting the most suitable form of an active pharmaceutical ingredient for development into a drug product. In this article, we review the different crystal forms of pharmaceuticals, the challenges that they present and recent advances in crystal structure determination. We then discuss computational approaches for predicting crystal properties. Finally, we review the analysis of crystal structures in furthering crystal engineering to design novel pharmaceutical compounds with desired physical and mechanical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of crystal structure on properties of polymorphs.
Figure 2: Fundamentals of crystal structure.
Figure 3: Types of racemate.
Figure 4: Application of the Monte Carlo method in crystal structure solution.
Figure 5: Application of the genetic algorithm (GA) method in crystal structure solution.
Figure 6: Application of the maximum entropy (ME) method to crystal structure solution.
Figure 7: Crystal engineering.

Similar content being viewed by others

References

  1. Vippagunta, S. R., Brittain, H. G. & Grant, D. J. W. Crystalline solids. Adv. Drug Deliv. Rev. 48, 3–26 (2001). Review of the structure and properties of crystalline pharmaceuticals.

    Article  CAS  PubMed  Google Scholar 

  2. Byrn, S. R., Pfeiffer, R. R. & Stowell, J. G. Solid State Chemistry of Drugs (SSCI, West Lafayette, 1999).

    Google Scholar 

  3. Hancock, B. C. & Zografi, G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 86, 1–12 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Borka, L. & Haleblian, J. K. Crystal polymorphism of pharmaceuticals. Acta Pharm. Jugosl. 40, 71–94 (1990).

    CAS  Google Scholar 

  5. Haleblian, J. K. Characterization of habits and crystalline modification of solids and their pharmaceutical applications. J. Pharm. Sci. 64, 1269–1288 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Brittain, H. G. & Fiese, E. F. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 331–362 (Marcel Dekker, New York, 1999).

    Google Scholar 

  7. Phadnis, N. V. & Suryanarayanan, R. Polymorphism in anhydrous theophylline: implications on the dissolution rate of theophylline tablets. J. Pharm. Sci. 86, 1256–1263 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Otsuka, M. & Matsuda, Y. Effects of environmental temperature and compression energy on polymorphic transformation during tableting. Drug Dev. Ind. Pharm. 19, 2241–2269 (1993).

    Article  CAS  Google Scholar 

  9. Otsuka, M., Hasegawa, H. & Matsuda, Y. Effect of polymorphic transformation during the extrusion-granulation process on the pharmaceutical properties of carbamazepine granules. Chem. Pharm. Bull. 45, 894–898 (1997).

    Article  CAS  Google Scholar 

  10. Otsuka, M., Hasegawa, H. & Matsuda, Y. Effect of polymorphic forms of bulk powders on pharmaceutical properties of carbamazepine granules. Chem. Pharm. Bull. 47, 852–856 (1999).

    Article  CAS  Google Scholar 

  11. Otsuka, M., Nakanishi, M. & Matsuda, Y. Effects of crystalline form on the tableting compression mechanism of phenobarbital polymorphs. Drug Dev. Ind. Pharm. 25, 205–215 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Otsuka, M., Ohtani, H., Otsuka, K. & Kaneniwa, N. Effect of humidity on solid-state isomerization of various kinds of lactose during grinding. J. Pharm. Pharmacol. 45, 2–5 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Wong, M. W. Y. & Mitchell, A. G. Physicochemical characterization of a phase change produced during the wet granulation of chlorpromazine hydrochloride and its effects on tableting. Int. J. Pharm. 88, 261–273 (1992).

    Article  CAS  Google Scholar 

  14. Miyamae, A. et al. X-ray powder diffraction study on the grinding effect of the polymorphs of a novel and orally effective uricosuric agent: FR76505. Drug Dev. Ind. Pharm. 20, 2881–2897 (1994).

    Article  CAS  Google Scholar 

  15. Chongprasert, S. et al. Effects of freeze-dry processing conditions on the crystallization of pentamidine isethionate. J. Pharm. Sci. 87, 1155–1160 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Morris, K. R., Griesser, U. J., Eckhardt, C. J. & Stowell, J. G. Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Adv. Drug Deliv. Rev. 48, 91–114 (2001). Explains the importance of crystal structure in pharmaceutical processing.

    Article  CAS  PubMed  Google Scholar 

  17. Morris, K. R. et al. Advances in pharmaceutical materials and processing. Pharm. Sci. Technol. Today 1, 235–245 (1998).

    Article  CAS  Google Scholar 

  18. Khankari, R. K. & Grant, D. J. W. Pharmaceutical hydrates. Thermochim. Acta 248, 61–79 (1995).

    Article  CAS  Google Scholar 

  19. Grant, D. J. W. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 1–33 (Marcel Dekker, New York, 1999).

    Google Scholar 

  20. Ghosh, S., Ojala, W. H., Gleason, W. B. & Grant, D. J. W. Relationships between crystal structures, thermal properties and solvate stability of dialkylhydroxypyridones and their formic acid solvates. J. Pharm. Sci. 84, 1392–1399 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Ojala, W. H., Khankari, R. K., Grant, D. J. W. & Gleason, W. B. Crystal structures and physical chemical properties of nedocromil zinc heptahydrate and nedocromil magnesium pentahydrate. J. Chem. Crystallog. 26, 167–178 (1996).

    Article  CAS  Google Scholar 

  22. Giordiano, F. et al. Physical properties of parabens and their mixtures: solubility in water, thermal behavior, and crystal structures. J. Pharm. Sci. 88, 1210–1216 (1999).

    Article  CAS  Google Scholar 

  23. Zhu, H. J., Young, V. G. Jr & Grant, D. J. W. Crystal structure and thermal behavior of nedocromil nickel octahydrate. Int. J. Pharm. 232, 23–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Brittain, H. G. The impact of polymorphism on drug development: a regulatory viewpoint. Am. Pharm. Rev. 3, 67–68, 70 (2000). Explains the regulatory issues related to the polymorphism of pharmaceuticals.

    CAS  Google Scholar 

  25. Bernstein, J. Polymorphism in Molecular Crystals (Oxford Univ. Press, New York, 2002). Comprehensively summarizes the current knowledge and understanding of the polymorphism of molecular crystals.

    Google Scholar 

  26. Morris, K. R. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 125–181 (Marcel Dekker, New York, 1999).

    Google Scholar 

  27. Andreetti, G. D. Crystallographic studies of inclusion compounds. Inclusion Compounds 3, 129–146 (1984).

    CAS  Google Scholar 

  28. Lipkowski, J. in Crystallography of Supramolecular Compounds NATO Science Series C Vol. 480 (eds Tsoucaris, G. et al.) 265–283 (Kluwer Academic, Boston, 1996).

    Book  Google Scholar 

  29. Brittain, H. G. & Grant D. J. W. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 279–330 (Marcel Dekker, New York, 1999).

    Google Scholar 

  30. Bechtloff, B., Nordhoff, S. & Ulrich, J. Pseudopolymorphs in industrial use. Cryst. Res. Technol. 36, 1315–1328 (2001). Explains the importance of pseudopolymorphs (solvates and hydrates) in the pharmaceutical industry.

    Article  CAS  Google Scholar 

  31. Berge, S. M., Bighley, L. D. & Monkhouse, D. C. Pharmaceutical salts. J. Pharm. Sci. 66, 1–19 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Neau, S. H. in Water-Insoluble Drug Formations (ed. Liu, R.) 405–425 (Interpharm, Buffalo Grove, 2000).

    Google Scholar 

  33. Puddipeddi, M., Serajuddin, A. T. M., Grant, D. J. W. & Stahl, P. H. in Handbook of Pharmaceutical Salts: Properties, Selection, and Use (eds Stahl, P. H. & Wermuth, C. G.) 19–38 (Wiley, Weinheim, 2002).

    Google Scholar 

  34. Giron, D. & Grant, D. J. W. in Handbook of Pharmaceutical Salts: Properties, Selection, and Use (eds Stahl, P. H. & Wermuth, C. G.) 41–81 (Wiley, Weinheim, 2002). Explains the importance of salt forms of pharmaceuticals in the stabilization and processing of pharmaceutical formulations.

    Google Scholar 

  35. Stahl, P. H. & Byrn, S. R. in Molecular Modeling Applications in Crystallization (ed. Myerson, A. S.) 313–345 (Cambridge Univ. Press, New York, 1999).

    Book  Google Scholar 

  36. Shah, R. D. & Nafie, L. A. Spectroscopic methods for determining enantiomeric purity and absolute configuration in chiral pharmaceutical molecules. Curr. Opin. Drug Discov. Devel. 4, 764–775 (2001).

    CAS  PubMed  Google Scholar 

  37. van Eikeren, P. Commercial manufacture of chiral pharmaceuticals. Chiral Separations 9–35 (1997).

  38. Gu, C. H. & Grant, D. J. W. in Handbook of Experimental Pharmacology: Stereochemical Aspects of Drug Action and Disposition Vol. 153 (eds Eichelbaum M., Testa, B. & Somogyi, A.) 113–137 (Springer, Berlin, 2003). Explains the structural basis of the solid-state properties of chiral pharmaceuticals.

    Book  Google Scholar 

  39. Li, Z. J. & Grant, D. J. W. Relationship between physical properties and crystal structures of chiral drugs. J. Pharm. Sci. 86, 1073–1078 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Abgada, C. O. & York, P. Dehydration of theophylline monohydrate powder: effects of particle size and sample weight. Int. J. Pharm. 106, 33–40 (1994).

    Article  Google Scholar 

  41. Sun, C. & Grant, D. J. W. Improved tableting properties of p-hydroxybenzoic acid by water of crystallization — a molecular insight. Pharm. Res. (in the press).

  42. Bandopadhyay, R. & Grant, D. J. W. Plasticity and slip system of plate-shaped crystals of L-lysine monohydrochloride dihydrate. Pharm. Res. 19, 491–496 (2002).

    Article  Google Scholar 

  43. Sun, C. & Grant, D. J. W. Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharm. Res., 18, 274–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Cullity, B. D. Elements of X-ray Diffraction 3rd edn (Prentice Hall, New Jersey, 2001). Provides an excellent introduction to crystal structures and X-ray crystallography.

    Google Scholar 

  45. Buerger, M. J. Elementary Crystallography 253–273 (Wiley Interscience, New York, 1963).

    Google Scholar 

  46. Zorky, P. M. Symmetry, pseudosymmetry and hypersymmetry of organic crystals. J. Mol. Struct. 374, 9–28 (1996).

    CAS  Google Scholar 

  47. Cambridge Crystallographic Data Centre, Cambridge Structural Database, University Chemical Laboratory, Cambridge, UK (1999). This databank includes more than 250,000 crystal structures and is a site reference for crystal structure reports.

  48. Perlstein, J. in Crystal Engineering: from Molecules and Crystals to Materials NATO Science Series C Vol. 538 (eds Braga, D., Grepini, F. & Orpen, G. A.) 23–42 (Kluwer Academic, Boston, 1999).

    Google Scholar 

  49. Buckingham, A. D. in Crystal Engineering: the Design and Application of Functional Solids NATO Science Series C Vol. 539 (eds Seddon, K. R. & Zaworotko, M.) 49–68 (Kluwer Academic, Boston, 1999).

    Book  Google Scholar 

  50. Pimental, G. C. & McClennan, A. L. The Hydrogen Bond (W. H. Freeman, San Francisco, 1960).

    Google Scholar 

  51. Scheiner, S. Hydrogen Bonding: A Theoretical Perspective (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  52. Desiraju, G. R. Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res. 35, 565–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Jeffrey, G. A. An Introduction to Hydrogen Bonding (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  54. Desiraju, G. R. & Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology (IUCr Monographs on Crystallography 9) 15–47 (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  55. Beyer, A., Karpfen, A. & Schuster, P. Energy surfaces of hydrogen complexes in the vapour phase. Topics Curr. Chem. 120, 1–40 (1984).

    Article  CAS  Google Scholar 

  56. Perlstein, J. Molecular self-assemblies 4. Using Kitaigorodskii's Aufbau principle for quantitatively predicting the packing geometry of semiflexible organic molecules in translation monolayer aggregates. J. Am. Chem. Soc. 116, 11420–11432 (1994).

    Article  CAS  Google Scholar 

  57. Smith, E. R. Electrostatic energy in ionic crystals. Proc. R. Soc. Lond. A 375, 475–505 (1981).

    Article  CAS  Google Scholar 

  58. Haleblian, J. K. & McCrone, W. C. Pharmaceutical applications of polymorphism. J. Pharm. Sci. 58, 911–929 (1969).

    Article  CAS  PubMed  Google Scholar 

  59. Burger, A. & Ramberger, R. On the polymorphism of pharmaceuticals and other molecular crystals. I. Theory of thermodynamic rules. Mikrochim. Acta II, 259–271 (1979).

    Article  Google Scholar 

  60. Burger, A. & Ramberger, R. On the polymorphism of pharmaceuticals and other molecular crystals. II. Applicability of thermodynamic rules. Mikrochim. Acta II, 273–316 (1979).

    Article  Google Scholar 

  61. Henck, J. O. & Kuhnert-Brandstatter, M. Demonstration of the terms enantiotropy and monotropy in polymorphism research exemplified by flurbiprofen. J. Pharm. Sci. 88, 103–108 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Yu, L., Reutzel, S. M. & Stephenson, G. A. Physical characterization of polymorphic drugs: an integrated characterization strategy. Pharm. Sci. Technol. Today 1, 118–127 (1998).

    Article  CAS  Google Scholar 

  63. Grunenberg, A., Henck, J. O. & Siesler, H. W. Theoretical derivation and practical application of energy/temperature diagrams as an instrument in preformulation studies of polymorphic drug substances. Int. J. Pharm. 129, 147–158 (1996).

    Article  CAS  Google Scholar 

  64. Yu, L. Inferring thermodynamic stability relationship of polymorphs from melting data. J. Pharm. Sci. 84, 966–974 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Gu, C. H., Young, V. Jr & Grant, D. J. W. Polymorph screening: influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 90, 1878–1890 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Toscani, S. An up-to-date approach to drug polymorphism. Thermochim. Acta 321, 73–79 (1998).

    Article  CAS  Google Scholar 

  67. Stahl, P. H. in Towards Better Safety of Drugs and Pharmaceutical Products (ed. Braimer, D. D.) 265–280 (Elsevier/North-Holland Biomedical, Amsterdam, 1980).

    Google Scholar 

  68. Giron, D. et al. Solid state characterizations of pharmaceutical hydrates. J. Thermal Anal. Cal. 68, 453–465 (2002).

    Article  CAS  Google Scholar 

  69. Morris, K. & Rodriguez-Hornedo, N. in Encyclopaedia of Pharmaceutical Technology Vol. 7 (eds Swarbrick, J. & Boylan, J. C.) 393–440 (Marcel Dekker, New York, 1993).

    Google Scholar 

  70. Florey, K. in Analytical Profiles of Drug Substances Vol. 2 (ed. Florey, K.) 1–62 (Academic, New York, 1973).

    Google Scholar 

  71. Sugawara, Y., Kamiya, N., Iwasaki, H., Ito, T. & Satow, Y. Humidity controlled reversible structure transition of disodium adenosine 5'-triphosphate between dihydrate and trihydrate in a single crystal state. J. Am. Chem. Soc. 113, 5440–5445 (1991).

    Article  CAS  Google Scholar 

  72. Sun, C., Zhou, D., Grant, D. J. W. & Young, V. G. Jr. Theophylline monohydrate. Acta Cryst. E 58, O368–O370 (2002).

    Article  CAS  Google Scholar 

  73. Cox, J. S. G., Woodgard, G. D. & McCrone, W. C. Solid state chemistry of cromolyn sodium (disodium cromoglycate). J. Pharm. Sci. 60, 1458–1465 (1971).

    Article  CAS  PubMed  Google Scholar 

  74. Stephenson, G. A. & Diseroad, B. A. Structural relationship and desolvation behaviour of cromolyn cefazolin and fenoprofen sodium hydrates. Int. J. Pharm. 198, 167–177 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Chen, L. R., Young, V. G., Lechuga-Ballesteros, D. & Grant, D. J. W. Solid state behavior of cromolyn sodium hydrates. J. Pharm. Sci. 88, 1191–1200 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Zhu, J., Padden, B. E., Munson, E. J. & Grant, D. J. W. Physicochemical characterization of nedocromil bivalent metal salt hydrates. 2. Nedocromil zinc. J. Pharm. Sci. 86, 418–428 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Khankari, R. K., Ojala, W. H., Gleason, W. B. & Grant, D. J. W. Crystal structure of nedocromil sodium heptahemihydrate and its comparison with that of nedocromil sodium trihydrate. J. Chem. Crystallogr. 25, 859–866 (1995).

    Article  Google Scholar 

  78. Ahlqvist, M. U. A. & Taylor, L. S. Water dynamics in channel hydrates investigated using H/D exchange. Int. J. Pharm. 241, 253–261 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Li, Z. J. & Grant, D. J. W. Relationship between physical properties and crystal structures of chiral drugs. J. Pharm. Sci. 86, 1073–1078 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Reddy, I. K., Kommuru, T. R., Zaghloul, A. A. & Khan, M. A. Chirality and its implications in transdermal drug development. Crit. Rev. Ther. Drug Carrier Syst. 17, 285–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Collet, A. & Vigne-Maeder, F. Increase of the occurrence of spontaneous resolution due to the crystallization of racemates under high pressure. New J. Chem. 19, 877–880 (1995).

    CAS  Google Scholar 

  82. Jacques, J., Collet, A. & Wilen, S. H. Enantiomers, Racemates, and Resolutions 3–213 (John Wiley & Sons, New York, 1981).

    Google Scholar 

  83. Burger, A., Rollinger, J. M. & Brueggeller, P. Binary system of (R)- and (S)-nitrendipine-polymorphism and structure. J. Pharm. Sci. 86, 674–679 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Kuhnert-Brandstaetter, M. & Ulmer, R. Contribution to the thermal analysis of optical antipodes-mandelic acid. Mikrochim. Acta 5, 927–935 (1974).

    Article  Google Scholar 

  85. Langhammer, L. Binary systems of enantiomeric nicotine derivatives. Arch. Pharm. 308, 933–939 (1975).

    Article  CAS  Google Scholar 

  86. Zhang, G. G. Z., Paspal, S. Y. L., Suryanarayanan, R. & Grant, D. J. W. Racemic species of sodium ibuprofen: characterization and polymorphic relationships. J. Pharm. Sci. 92, 1356–1366 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Jacques, J. & Gabard, J. Optical antipode mixtures. III. Solubility diagrams for several types of racemates. Bull. Soc. Chim. Fr. 1, 342–350 (1972).

    Google Scholar 

  88. Flack, H. D. Chiral and achiral crystal structure. Helv. Chim. Acta 86, 907–921 (2003).

    Article  Google Scholar 

  89. Bel'skii, V. K. & Zorkii, P. M. Distribution of organic homomolecular crystals by chiral types and structural classes. Acta Cryst. A33, 1004–1006 (1977).

    CAS  Google Scholar 

  90. Stout, G. H. & Jensen, L. H. X-Ray Structure Determination: A Practical Guide 2nd edn (John Wiley & Sons, New York, 1989).

    Google Scholar 

  91. Fagan, P. G., Hammond, R. B., Roberts, K. J., Docherty, R. & Edmondson, M. in Crystal Growth of Organic Materials Third International Workshop on Crystal Growth of Organic Materials Conference (eds Myerson, A., Green, D.A. & Meenan, P.) 22–27 (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  92. Jones, P. G. Crystal growing. Chem. Br. 17, 222–225 (1981). Describes the common methods for growing single crystals.

    CAS  Google Scholar 

  93. Threlfall, T. L. Analysis of organic polymorphs, a review. Analyst 120, 2435–2460 (1995).

    Article  CAS  Google Scholar 

  94. Guillory, J. K. in Polymorphism in Pharmaceutical Solids (ed. Brittain, H. G.) 183–226 (Marcel Dekker, New York, 1999).

    Google Scholar 

  95. Mullin, J. W. Crystallization 4th edn (Butterworth–Heinemann, Boston, 2001).

    Google Scholar 

  96. Mitchell, C. A., Yu, L. & Ward, M. D. Selective nucleation and discovery of organic polymorphs through epitaxy with single crystal substrate. J. Am. Chem. Soc. 123, 10830–10839 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Hilden, J. L. et al. Capillary precipitation of a highly polymorphic organic compound. Cryst. Growth Des. 3, 921–926 (2003).

    Article  CAS  Google Scholar 

  98. Zaccaro, J., Matic, J., Myerson, A. S. & Garetz, B. A. Nonphotochemical, laser-induced nucleation of supersaturated aqueous glycine produces unexpected γ-polymorph. Cryst. Growth Des. 1, 5–8 (2001). References 96–98 describe newer methods of generating polymorphs: epitaxy, capillary crystallization and laser-induced nucleation.

    Article  CAS  Google Scholar 

  99. Beckmann, W., Otto, W. & Budde, U. Crystallization of the stable polymorph of hydroxytriendione: seeding process and effects of purity. Org. Process Res. Dev. 5, 387–392 (2001).

    Article  CAS  Google Scholar 

  100. Wang, B., Lu, Z. P., Shi, E. W. & Zhong, W. Z. Twinning morphologies and mechanisms of β-BaB2O4 (BBO) crystal grown by TSSG method. Cryst. Res. Technol. 33, 929–935 (1998).

    Article  CAS  Google Scholar 

  101. Wadhawan, V. K. A tensor classification of twinning in crystals. Acta Cryst. A 53, 546–555 (1997).

    Article  Google Scholar 

  102. von Laue, M. Eine quantitative prüfung der theorie für die interferenz-erscheinungen bei röntgenstrahlen. Sitz. Math. Phys. Klasse Bayer. Akad. Wiss. 363–373 (1912).

  103. Bragg, W. L. Diffraction of short electromagnetic waves by a crystal. Proc. Cambridge Philos. Soc. 17, 43–57 (1913).

    CAS  Google Scholar 

  104. Giacovazzo, C. Fundamentals of Crystallography (Oxford Univ. Press, New York, 2002).

    Google Scholar 

  105. Hanh, T. International Table of Crystallography Vol. A 5th edn (Kluwer Academic, Dordrecht, 2002).

    Google Scholar 

  106. Sayre, D. in Computational Crystallography (ed. Sayre, D.) 65–140 (Claredon, Oxford, 1982).

    Google Scholar 

  107. Giacovazzo, C. in International Tables for Crystallography 2nd edn Vol. B (ed. Shmueli, U.) 210–234 (Kluwer Academic, Dordrecht, 2002).

    Google Scholar 

  108. Giacovazzo, C. Direct Phasing in Crystallography: Fundamentals and Applications (Oxford Univ. Press, Oxford, 1998). Explains the most common technique for solving crystal structures from single crystal X-ray diffraction patterns.

    Google Scholar 

  109. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983). This seminal paper explains the value and the process of simulated annealing.

    Article  CAS  PubMed  Google Scholar 

  110. Catlow, C. R. A., Thomas, J. M., Freeman, C. M., Wright, P. A. & Bell, R. G. Simulating and predicting crystal structures. Proc. R. Soc. Lond. A 442, 85–96 (1993).

    Article  CAS  Google Scholar 

  111. Bond, A. D. & Jones, W. Structure prediction as a tool for solution of the crystal structures of metallo-organic complexes using powder X-ray diffraction data. Acta Cryst. B 58, 233–243 (2002).

    Article  CAS  Google Scholar 

  112. Gavezzotti, A. & Filippini, G. Polymorphic forms of organic crystals at room conditions: thermodynamic and structural implications. J. Am. Chem. Soc. 117, 12299–12305 (1995).

    Article  CAS  Google Scholar 

  113. Lommerse, J. P. M. et al. A test of crystal structure prediction of small organic molecules. Acta Cryst. B 56, 697–714 (2000).

    Article  CAS  Google Scholar 

  114. Giovannini, J., Perrin, M. A., Louer, D. & Leveiller, F. Ab initio crystal structure determination of three pharmaceutical compounds from X-ray powder diffraction data. Mater. Sci. Forum 2, 582–587 (2001).

    Article  Google Scholar 

  115. Bond, A. D., Feeder, N., Teat, S. J. & Jones, W. The solid-state structure of 3-hydroxy-4-methyl-2(3H)-thiazolethione: prediction and measurement. Tetrahedron 56, 6617–6624 (2000).

    Article  CAS  Google Scholar 

  116. Motherwell, W. D. S. et al. Crystal structure prediction of small molecules: a second blind test. Acta Cryst. B 58, 647–661 (2002). Describes the results from the most recent Cambridge Crystallographic Data Centre (CCDC) workshop for testing the feasibility of the various programs in predicting the crystal structure of three compounds from their individual molecular structures only.

    Article  CAS  Google Scholar 

  117. Freeman, C. M. & Catlow, C. R. A. Structure predictions in inorganic solids. J. Chem. Soc. Chem. Comm. 2, 89–91 (1992).

    Article  Google Scholar 

  118. Gdanitz, R. J. in Theoretical Aspects and Computer Modeling of the Molecular Solid State (ed. Gavezzotti, A.) 185–201 (Wiley, Chichester, 1997). Explains the ab initio method of crystal structure prediction.

    Google Scholar 

  119. Karfunkel, H. R. & Gdanitz, R. J. Ab initio prediction of possible crystal structures for general organic molecules. J. Comp. Chem. 13, 1171–1183 (1992).

    Article  CAS  Google Scholar 

  120. Smith, E. D. L. et al. The determination of the crystal structure of anhydrous theophylline by X-ray powder diffraction with a systematic search algorithm, lattice energy calculations, and 13C and 15N solid-state NMR: a question of polymorphism in a given unit cell. J. Phys. Chem. B 105, 5818–5826 (2001).

    Article  CAS  Google Scholar 

  121. Ko, G. H. & Fink, W. H. A combined quantum chemistry and classical molecular interaction energy method for the determination of crystal geometries and energies. J. Chem. Phys. 116, 747–754 (2002).

    Article  CAS  Google Scholar 

  122. Gavezzotti, A. Organic crystals: engineering and design. Curr. Opin. Solid State Mater. Sci. 1, 501–505 (1996).

    Article  CAS  Google Scholar 

  123. Buttar, D., Charlton, M. H., Docherty, R. & Starbuck, J. Theoretical investigations of conformational aspects of polymorphism. Part 1: o-acetamidobenzamide. J. Chem. Soc. Perkin Trans. I 2, 763–772 (1998).

    Article  Google Scholar 

  124. Childs, S. L. Nonbonded Interactions in Molecular Crystal Structures (Emory Univ., Atlanta, 2001).

    Google Scholar 

  125. Filippini, G., Gavezzotti, A. & Novoa, J. J. Modelling the crystal structure of the 2-hydronitronylnitroxide radical (HNN): observed and computer-generated polymorphs. Acta Cryst. B 55, 543–553 (1999).

    Article  CAS  Google Scholar 

  126. Gavezzotti, A. Methods and current trends in the simulation and prediction of organic crystal structures. Nova Acta Leopold. 79, 33–46 (1999).

    CAS  Google Scholar 

  127. Gao, D. W. & Donald, E. Molecular packing groups and ab initio crystal-structure prediction. Acta Cryst. A 55, 621–627 (1999).

    Article  CAS  Google Scholar 

  128. Williams, D. E. I. in Crystal Engineering: From Molecules and Crystals to Materials NATO Science Series C Vol. 538 (eds Braga, D., Grepini, F. & Orpen, G. A.) 295–310 (Kluwer Academic, Boston, 1999).

    Book  Google Scholar 

  129. Mooij, W. T. M., van Eijck, B. P. & Kroon, J. Ab initio crystal structure predictions for flexible hydrogen-bonded molecules. J. Am. Chem. Soc. 122, 3500–3505 (2000).

    Article  CAS  Google Scholar 

  130. Allen, F. H., Kennard, O. & Taylor, R. Systematic analysis of structural data as a research technique in organic chemistry. Acc. Chem. Res. 16, 146–153 (1983).

    Article  CAS  Google Scholar 

  131. Sarma, J. A. R. P. & Desiraju, G. R. The supramolecular synthon approach to crystal structure prediction. Cryst. Growth Des. 2, 93–100 (2002).

    Article  CAS  Google Scholar 

  132. Mooij, W. T. M., van Eijck, B. P. & Kroon, J. Transferable ab initio intermolecular potentials. 2. Validation and application to crystal structure prediction. J. Phys. Chem. A 103, 9883–9890 (1999).

    Article  CAS  Google Scholar 

  133. Leusen, F. J. J. Ab initio prediction of polymorphs. J. Cryst. Growth 166, 900–903 (1996).

    Article  CAS  Google Scholar 

  134. Dong, Z. et al. Crystal structure of neotame anhydrate polymorph G. Pharm. Res. 19, 1549–1553 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Chin, D. N. Improving the efficiency of predicting hydrogen-bonded organic molecules. Trans. Am. Cryst. Assoc. 33, 33–43 (1999).

    Google Scholar 

  136. Gdanitz, R. J. Prediction of molecular crystal structures by Monte Carlo simulated annealing without reference to diffraction data. Chem. Phys. Lett. 190, 391–396 (1992). Explains the application of the Monte Carlo method in predicting crystal structures.

    Article  CAS  Google Scholar 

  137. Hammond, R. B., Roberts, K. J., Docherty, R. & Edmondson, R. B. in Crystal Growth of Organic Materials International Workshop 4th edn (ed. Ulrich, J.) 53–60 (Shaker, Aachen, 1997).

    Google Scholar 

  138. Hammond, R. B. et al. Determining the crystal structures of organic solids using x-ray powder diffraction together with molecular and solid state modeling techniques. Molecular Crystals and Liquid Crystals Science and Technology A 356, 389–405 (2001).

    Google Scholar 

  139. Harris, K. D. M. & Tremayne, M. Crystals structure determination from powder diffraction data. Chem. Mater. 8, 2554–2570 (1996). Explains the prediction of the crystal structure of compounds from their powder diffraction data only.

    Article  CAS  Google Scholar 

  140. Aakeroy, C. B., Beatty, A. M., Tremayne, M., Rowe, D. M. & Seaton, C. C. A combination of X-ray single crystal diffraction and Monte Carlo structure solution from X-ray powder diffraction data in a structural investigation of 5-bromonicotinic acid and solvates thereof. Cryst. Growth Des. 1, 377–382 (2001).

    Article  CAS  Google Scholar 

  141. Will, G. POWLS: a powder least-squares program. J. Appl. Cryst. 12, 483–485 (1979).

    Article  CAS  Google Scholar 

  142. Pawley, G. S. Unit-cell refinement from powder diffraction scans. J. Appl. Cryst. 14, 357–361 (1981).

    Article  CAS  Google Scholar 

  143. Langford, J. I. & Louer, D. High-resolution powder diffraction studies of copper (II) oxide. J. Appl. Cryst. 24, 149–155 (1991).

    Article  CAS  Google Scholar 

  144. Langford, J. I., Cernik, R. J. & Louer, D. The breadth and shape of instrumental line profiles in high-resolution powder diffraction. J. Appl. Cryst. 24, 912–918 (1991).

    CAS  Google Scholar 

  145. Will, G., Parrish, W. & Huang, T. C. Crystal-structure refinement by profile fitting and least-squares analysis of powder diffractometer data. J. Appl. Cryst. 16, 611–622 (1983).

    Article  CAS  Google Scholar 

  146. Langford, J. I., Louer, D., Sonneveld, E. J. & Visser, J. W. Applications of total pattern fitting to a study of crystallite size and strain in zinc oxide powder. Powder Diffract. 1, 211–221 (1986).

    Article  CAS  Google Scholar 

  147. David, W. I. F., Shankland, K. & Shankland, N. Routine determination of molecular crystal structures from powder diffraction data. Chem. Commun. (Camb.) 8, 931–932 (1998).

    Article  Google Scholar 

  148. Shankland, K., David, W. I. F. & Csoka, T. Crystal structure determination from powder diffraction data by the application of a genetic algorithm. Zeit. fuer Kristall. 212, 550–552 (1997).

    CAS  Google Scholar 

  149. Harris, K. D. M., Johnston, R. L. & Kariuki, B. M. The genetic algorithm: foundations and applications in structure solution from powder diffraction data. Acta Cryst. A 54, 632–645 (1998). Explains the use of the genetic algorithm for predicting the crystal structure of compounds from their powder diffraction pattern.

    Article  Google Scholar 

  150. Hammond, R. B., Roberts, K. J., Docherty, R. & Edmondson, M. Computationally assisted structure determination for molecular materials from X-ray powder diffraction data. J. Phys. Chem. B 101, 6532–6536 (1997).

    Article  CAS  Google Scholar 

  151. Harris, K. D. M., Tremayne, M., Lightfoot, P. & Bruce, P. G. Crystal structure determination from powder diffraction data by Monte Carlo methods. J. Am. Chem. Soc. 116, 3543–3547 (1994).

    Article  CAS  Google Scholar 

  152. Harris, K. D. M., Johnston, R. L., Kariuki, B. M. & Tremayne, M. A genetic algorithm for crystal structure solution from powder diffraction data. J. Chem. Res. Synop. 7, 390–391 (1998).

    Article  Google Scholar 

  153. Harris, K. D. M. et al. Recent advances in opportunities for solving molecular crystal structures directly from powder diffraction data: new insights in crystal engineering contexts. Cryst. Eng. Comm. 4, 356–367 (2002).

    Article  CAS  Google Scholar 

  154. Turner, G. W., Tedesco, E., Harris, K. D. M., Jonhston, R. L. & Kariuki, B. M. Implementation of Lamarckian concepts in a genetic algorithm for structure solution from powder diffraction data. Chem. Phys. Lett. 321, 183 (2000).

    Article  CAS  Google Scholar 

  155. Habershon, S., Turner, G. W., Harris, K. D. M., Johnston, R. L. & Johnston, J. M. Gaining insights into the evolutionary behavior in genetic algorithm calculations, with applications in structure solution from powder diffraction data. Chem. Phys. Lett. 353, 185–194 (2002).

    Article  CAS  Google Scholar 

  156. Lanning, O. J. et al. Definition of a 'guiding function' in global optimization: a hybrid approach combining energy and R-factor in structure solution from powder diffraction data. Chem. Phys. Lett. 317, 296–303 (2000).

    Article  CAS  Google Scholar 

  157. Gilmore, C. Maximum entropy and Bayesian statistics in crystallography: a review of practical applications. Acta Cryst. A 52, 561–589 (1996). Explains the use of the maximum entropy algorithm for the prediction of the crystal structures of compounds and reviews its application.

    Article  Google Scholar 

  158. Gilmore, C. J., Shankland, K. & Bricogne, G. Applications of the maximum entropy method to powder diffraction and electron crystallography. Proc. R. Soc. Lond. A 442, 97–111 (1993).

    Article  CAS  Google Scholar 

  159. Presented at the fifteenth annual meeting of the National Science Teachers Association, 1966 in New York City, and reprinted from The Physics Teacher Vol. 7, issue 6, 1968, pp. 313–320 by permission of the editor and the author.

  160. Braga, D., Desiraju, G. R., Miller, J. S., Guy Orpen, A. & Price, S. Innovation in crystal engineering. Cryst. Eng. Comm. 4, 500–509 (2002).

    Article  CAS  Google Scholar 

  161. Pepinsky, R. Crystal engineering-new concept in crystallography. Phys. Rev. II 100, 971 (1955).

    CAS  Google Scholar 

  162. Schmidt, G. M. J. Photodimerization in solid state. Pure Appl. Chem. 647, 647–678 (1971).

    Article  Google Scholar 

  163. Panunto, T. W., Lipkowska, Z. U., Johnson, R. & Etter, M. C. Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials. J. Am. Chem. Soc. 109, 7786–7797 (1987).

    Article  CAS  Google Scholar 

  164. Braga, D. & Fabrizia, G. in Crystal Engineering: From Molecules and Crystals to Materials (eds Braga, D., Grepioni, F. & Guy Orpen, A.) 421–441 (Kluwer Academic, Boston, 1999). Comprehensive work summarizing the recent achievements and future trends in crystal engineering.

    Book  Google Scholar 

  165. Desiraju, G. R. Supramolecular synthons in crystal engineering — a new organic synthesis. Angew. Chem. Int. Edn Eng. 34, 2311–2327 (1995)

    Article  CAS  Google Scholar 

  166. Walsh, B. R. D. et al. Crystal engineering of the composition of pharmaceutical phases. Chem. Commun. 2, 186–187 (2003).

    Article  CAS  Google Scholar 

  167. Bis, J. A., Shattock, T. R. & Zaworotko, M. J. Design of binary crystals that contain pharmaceutical molecules, Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23–27 (2003).

  168. McMahon, J. A. & Zaworotko, M. J. Crystal engineering of novel pharmaceutical phases, Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23–27 (2003).

  169. Fleischman, S., Morales, L. A. & Zaworotko, M. J. Crystal engineering of binary crystals that contain pharmaceutical molecules, Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, April 7–11 (2002).

  170. Remenar, J. F. et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J. Am. Chem. Soc. 125, 8456–8457 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Payne, R. S., Roberts, R. J. & Rowe, R. C. The mechanical properties of two forms of primidone predicted from their crystal structures. Int. J. Pharm. 145, 165–173 (1996).

    Article  CAS  Google Scholar 

  172. Roberts, R. J., Payne, R. S. & Rowe, R. C. Mechanical property predictions for polymorphs of sulphathiazole and carbamazepine. Eur. J. Pharm. Sci. 9, 277–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Roberts, R. J., Rowe, R. C. & Kendall, K. Brittle–ductile transitions in die compaction of sodium chloride. Chem. Eng. Sci. 44, 1647–1651 (1989).

    Article  CAS  Google Scholar 

  174. Roberts, R. J. & Rowe, R. C. Determination of the critical stress intensity factor (KIC) of microcrystalline cellulose using radially edge-cracked tablets. Int. J. Pharm. 52, 213–219 (1989).

    Article  CAS  Google Scholar 

  175. Bassam, F., York, P., Rowe, R. C. & Roberts, R. J. Young's modulus of powders used as pharmaceutical excipients. Int. J. Pharm. 64, 55–60 (1990).

    Article  CAS  Google Scholar 

  176. Roberts, R. J., Rowe, R. C. & York, P. The relationship between Young's modulus of elasticity of organic solids and their molecular structure. Powder Technol. 65, 139–146 (1991).

    Article  CAS  Google Scholar 

  177. Nangia, A. Database research in crystal engineering. Cryst. Eng. Comm. 4, 93–101 (2002).

    Article  CAS  Google Scholar 

  178. Gavezzotti, A. Ten years of experience in polymorph prediction: what next? Cryst. Eng. Comm. 4, 343–347 (2002).

    Article  CAS  Google Scholar 

  179. Rohl, A. L. Computer prediction of crystal morphology. Curr. Opin. Solid State Mater. Sci. 7, 21–26 (2003).

    Article  CAS  Google Scholar 

  180. Rajeswaran, M. et al. Three-dimensional structure determination of N-(p-tolyl)-dodecylsulfonamide from powder diffraction data and validation of structure using solid-state NMR spectroscopy. J. Am. Chem. Soc. 124, 14450–14459 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. Tishmack, P. A., Bugay, D. E. & Byrn, S. R Solid-state nuclear magnetic resonance spectroscopy — pharmaceutical applications. J. Pharm. Sci. 92, 441–474 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. Reutzel-Edens, S. M. & Bush, J. K. Solid-state NMR spectroscopy of small molecules: from NMR crystallography to the characterization of solid oral dosage forms. Am. Pharm. Rev. 5, 112–115 (2002).

    CAS  Google Scholar 

  183. Bugay, D. E. Characterization of the solid-state:spectroscopic techniques. Adv. Drug Del. Rev. 48, 43–65 (2001).

    Article  CAS  Google Scholar 

  184. Taylor, L. S. & Langklide, F. W. Evaluation of solid-state forms present in tablets by Raman spectroscopy. J. Pharm. Sci., 89, 1342–1353 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Kempf, D. J. et al. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl Acad. Sci. USA 92, 2484–2488 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chemburkar, S. R. et al. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org. Process Res. Dev. 4, 413–417 (2000).

    Article  CAS  Google Scholar 

  187. Young, A. The Rietveld Method International Union of Crystallography (Oxford Univ. Press, New York, 1993). Explains the Rietveld refinement method in detail.

    Google Scholar 

  188. McCusker, L. B., von Dreele, R. B., Cox, D. E., Louer, D. & Scardi, P. Rietveld refinement guidelines. J. Appl. Cryst. 32, 36–50 (1999).

    Article  CAS  Google Scholar 

  189. Stephenson, G. A. & Young, R. Potential applications of Rietveld analysis in the pharmaceutical industry. Am. Pharm. Rev. 4, 46–51 (2001).

    CAS  Google Scholar 

  190. Kisi, E. H. Rietveld analysis of powder diffraction patterns. Mater. Forum 18, 135–153 (1994).

    CAS  Google Scholar 

  191. Rietveld, H. M. Profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Sheth for kindly reviewing the manuscript and for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. W. Grant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Cambridge Crystallographic Data Centre

International Union of Crystallography

Glossary

PHASE TRANFORMATION

The transformation of a solid from one physical form to another. Phase transformation can involve the transformation of a single component into one or more components, and can result from changes in physical conditions, as in pharmaceutical processing. Examples of phase transformation include polymorphic transitions, crystallization of amorphous solids, and solid-state solvation and desolvation.

MOLECULAR ADDUCT

A crystal is termed a molecular adduct when its lattice consists of more than one chemical component.

SOLVATE

A solid phase that contains solvent molecules, in addition to molecules of the major component, in the crystal lattice.

HYDRATE

A solid phase that contains water molecules, in addition to molecules of the major component, in the crystal lattice.

HYDROGEN BOND

An attractive interaction between two electronegative atoms through a hydrogen bridge. The hydrogen bond is partly electrostatic and partly covalent in nature, with limited orbital overlap between the participating atoms. Of the two electronegative atoms, one is the proton donor and the other is a proton acceptor. When present within the same molecule, a hydrogen bond is termed intramolecular. When present between two molecules, a hydrogen bond is termed intermolecular.

SLIP SYSTEM

The term slip refers to the translational motion of lattice planes relative to each other. Such planes are termed slip planes. A family of slip planes, together with the slip direction, is termed a slip system.

ENANTIOTROPE

The members of a pair of polymorphs are termed enantiotropes when their mutual transition temperature is less than the melting point of either polymorph. Each enantiotrope has its own temperature range of stability.

MONOTROPE

The members of a pair of polymorphs are termed monotropes when they have no mutual transition temperature. One monotrope is always more stable than the other polymorph under all conditions in which the solid state can exist.

ISOLATED SITE HYDRATE

In an isolated site hydrate, the water molecules in the crystal lattice of the hydrate are isolated from direct contact with other water molecules by intervening molecules of the major component.

ION-ASSOCIATED HYDRATE

In an ion-associated hydrate, the water molecules in the crystal lattice of the hydrate are coordinated to certain ions (often metal ions).

CHANNEL HYDRATE

In a channel hydrate, the water molecules present in the crystal lattice of the hydrate lie next to other water molecules of adjoining unit cells, forming channels through the crystals along a direction in the lattice.

EXPANDED CHANNEL HYDRATE

An expanded channel hydrate can take up water into the channels when exposed to relatively high humidity and can release water from the channels when exposed to relatively low humidity. The crystal lattice can expand or contract as hydration or dehydration proceeds, changing the dimensions of the unit cell.

PLANAR HYDRATE

A planar hydrate is a channel hydrate in which water molecules are localized in a plane, corresponding to two-dimensional order.

SOLID SOLUTION

A solid solution can be substitutional or interstitial. A substitutional solid solution is a homogeneous crystalline phase in which some of the constituent molecules are substituted by foreign molecules that possess sufficient similarity that the lattice dimensions are changed only slightly. In an interstitial solid solution, the foreign molecules are inserted into interstitial positions, such that the lattice dimensions are changed only slightly.

IMPROPER ROTATION ELEMENT

A 360°/n rotation about an n-fold axis of improper rotation, followed by a reflection through a mirror plane perpendicular to the rotation axis.

SYNCHROTRON

An electron accelerator that uses synchronized magnetic fields. When the high-speed electrons are directed to collide with an appropriate target, high-energy X-ray radiation or ultraviolet radiation is produced.

MELT

When a solid is heated beyond its melting temperature, it fuses (melts) to produce a liquid that can be termed a melt.

EPITAXIAL GROWTH

The growth of one crystal on the surface of another crystal (the substrate), on which the growth of the deposited crystal is oriented by the lattice structure of the substrate.

CAPILLARY CRYSTALLIZATION

A specific crystallization technique in which the crystals nucleate and grow inside a capillary as a result of slow solvent evaporation.

SYSTEMATIC ABSENCES

The systematic absence of specific groups of reflections in a diffraction pattern of a crystal indicates the presence of certain symmetry elements and enables the crystallographic space group of the crystal lattice to be defined.

PATTERSON METHOD

The Patterson method employs the relatively large electron diffraction resulting from the presence of heavy atoms (atomic number >17) to determine the crystal structures of inorganic and organic compounds.

ISOMORPHOUS REPLACEMENT METHOD

In the isomorphous replacement method, a heavy atom is introduced into the crystal lattice without disrupting the original crystal structure. The new crystal obtained is known as the derivative crystal. The aim of isomorphous replacement is to obtain the structure of the original crystal by constructing a map (that is, a Patterson map) of the difference in electron density between the diffraction pattern of the derivative crystal and that of the heavy atom. This method is used to determine the crystal structures of proteins.

TAUTOMERISM

An equilibrium, usually under ambient conditions, of two isomers of a compound.

SPORANOX BEAD

An amorphous capsule that is used to achieve the required oral bioavailability of extremely water-insoluble drugs, such as itraconazole.

YOUNG'S MODULUS

A measure of a material's elasticity, which is defined as the force per unit cross-section of the material divided by the fractional increase in length that results from the stretching of a standard specimen of the material.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, S., Grant, D. Crystal structures of drugs: advances in determination, prediction and engineering. Nat Rev Drug Discov 3, 42–57 (2004). https://doi.org/10.1038/nrd1280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing