Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular therapy in head and neck oncology

Abstract

Therapeutic management of locally advanced, recurrent and metastatic head and neck squamous cell carcinoma (HNSCC) is often limited by a rather unfavorable efficacy and toxicity ratio. Since the 1990s, targeted molecular therapy has been extensively investigated both as a single modality and in combination with cytotoxic treatments, such as radiotherapy or chemotherapy. EGFR is commonly over expressed in HNSCC and is an attractive molecular target. The EGFR signaling pathway is involved in a variety of cellular responses including cell growth and proliferation, and monoclonal antibodies and small-molecule inhibitors have been developed to inhibit EGFR pathways. Agents that target angiogenesis have also been tested in combination with EGFR inhibitors. A number of phase I/II and phase III studies have demonstrated that patients with high-risk HNSCC or those receiving palliative treatment for recurrent or metastatic disease benefit from the addition of EGFR inhibitors to chemotherapy and radiotherapy. This Review discusses the rationale for using targeted therapies based on inhibition of EGFR and angiogenesis, and describes the most recent preclinical and clinical evidence of the important role for targeted therapies in the management of head and neck cancers.

Key Points

  • On the basis of phase III data in patients with locally advanced HNSCC, coadministration of chemotherapy and radiotherapy yields higher rates of local control and survival than radiotherapy alone, but it is also considerably more toxic

  • Upregulation of EGFR signaling has an important role in the growth and metastasis of a wide range of tumors and is overexpressed in more than 90% of HNSCC

  • Monoclonal antibodies against EGFR and small-molecule tyrosine kinase inhibitors inhibit tumor growth, invasion and metastasis, DNA damage repair, and angiogenesis

  • In patients with locally advanced disease, cetuximab plus radiation significantly improves the median duration of locoregional control and overall survival, compared with radiation alone

  • The use of agents that target the outer and inner domains of EGFR is under investigation

  • Upregulation of VEGF levels by EGFR activation and cytotoxic agents justifies the use of molecular therapies that target both EGFR and VEGF

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    Article  PubMed  Google Scholar 

  2. Bernier, J. & Bentzen, S. M. Altered fractionation and combined radio-chemotherapy approaches: pioneering new opportunities in head and neck oncology. Eur. J. Cancer 39, 560–571 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Bentzen, S. M., Harari, P. M. & Bernier, J. Exploitable mechanisms for combining drugs with radiation: an overview of the concepts, achievements and future directions. Nat. Clin. Pract. Oncol. 4, 72–80 (2007).

    Article  Google Scholar 

  4. Bernier, J. & Cooper, J. S. Chemoradiation after surgery for high-risk head and neck cancer patients: how strong is the evidence? Oncologist 10, 215–224 (2005).

    Article  PubMed  Google Scholar 

  5. Bentzen, S. M. & Trotti, A. Evaluation of early and late toxicities in chemoradiation trials. J. Clin. Oncol. 25, 4096–4103 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Bentzen, S. M. et al. Increasing toxicity in nonoperative head and neck cancer treatment: investigations and interventions. Int. J. Radiat. Oncol. Biol. Phys. 69 (Suppl. 2), S79–S82 (2007).

    Article  PubMed  Google Scholar 

  7. Clavel, M. et al. Randomized comparison of cisplatin, methotrexate, bleomycin and vincristine (CABO) versus cisplatin and 5-fluorouracil (CF) versus cisplatin (C) in recurrent or metastatic squamous cell carcinoma of the head and neck. A phase III study of the EORTC Head and Neck Cancer Cooperative Group. Ann. Oncol. 5, 521–526 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Forastiere, A. A. et al. Randomized comparison of cisplatin plus fluorouracil and carboplatin plus fluorouracil versus methotrexate in advanced squamous-cell carcinoma of the head and neck: a Southwest Oncology Group study. J. Clin. Oncol. 10, 1245–1251 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Jacobs, C. et al. A phase III randomized study comparing cisplatin and fluorouracil as single agents and in combination for advanced squamous cell carcinoma of the head and neck. J. Clin. Oncol. 10, 257–263 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Colevas, A. D. Chemotherapy options for patients with metastatic or recurrent squamous cell carcinoma of the head and neck. J. Clin. Oncol. 24, 2644–2652 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. León, X. et al. A retrospective analysis of the outcome of patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck refractory to a platinum-based chemotherapy. Clin. Oncol. (R. Coll. Radiol.) 17, 418–424 (2005).

    Article  Google Scholar 

  12. Pfister, D. G. et al. Concurrent cetuximab, cisplatin, and concomitant boost radiotherapy for locoregionally advanced, squamous cell head and neck cancer: a pilot phase II study of a new combined-modality paradigm. J. Clin. Oncol. 24, 1072–1078 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kies, M. S. et al. Induction chemotherapy (CT) with weekly paclitaxel, carboplatin, and cetuximab for squamous cell carcinoma of the head and neck (HN) [Abstract]. ASCO Meeting Abstracts 24, 5520 (2006).

    Google Scholar 

  14. Bozec, A. et al. Dual inhibition of EGFR and VEGFR pathways in combination with irradiation: antitumour supra-additive effects on human head and neck cancer xenografts. Br. J. Cancer 97, 65–72 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell. Biol. 2, 127–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Vivanco, I. & Sawyers, C.L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489–501 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Choong, N. W. & Cohen, E. E. Epidermal growth factor receptor directed therapy in head and neck cancer. Crit. Rev. Oncol. Hematol. 57, 25–43 (2006).

    Article  PubMed  Google Scholar 

  18. Nyati, M. K., Morgan, M. A., Feng, F. Y. & Lawrence, T. S. Integration of EGFR inhibitors with radiochemotherapy. Nat. Rev. Cancer 6, 876–885 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Pectasides, E. et al. Evalutation of the prognostic significance of activated STAT3 expression levels in head and neck squamous cell cell carcinoma. ASCO Meeting Abstracts 26, 6015 (2008).

    Google Scholar 

  20. Pinkas-Kramarski, R. et al. Diversification of Neu differentiation factor and epidermal growth factor signalling by combinatorial receptor interactions. EMBO J. 15, 2452–2467 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rubin Grandis, J., Chakraborty, A., Melhem, M. F., Zeng, Q. & Tweardy, D. J. Inhibition of epidermal growth factor receptor gene expression and function decreases proliferation of head and neck squamous carcinoma but not normal mucosal epithelial cells. Oncogene 15, 409–416 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Shin, D. M., Ro, J. Y., Hong, W. K. & Hittelman, W. N. Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis. Cancer Res. 54, 3153–3159 (1994).

    CAS  PubMed  Google Scholar 

  23. Nozawa, H. et al. Small interfering RNA targeting epidermal growth factor receptor enhances chemosensitivity to cisplatin, 5-fluorouracil and docetaxel in head and neck squamous cell carcinoma. Cancer Sci. 97, 1115–1124 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Takes, R. P. et al. Differences in expression of oncogenes and tumor suppressor genes in different sites of head and neck squamous cell. Anticancer Res. 8, 4793–4800 (1998).

    Google Scholar 

  25. Maurizi, M. et al. Prognostic significance of epidermal growth factor receptor in laryngeal squamous cell carcinoma. Br. J. Cancer 74, 1253–1257 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ang, K. K. et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 62, 7350–7356 (2002).

    CAS  PubMed  Google Scholar 

  27. Garcia de Palazzo, I. E. et al. Expression of mutated epidermal growth factor receptor by non small cell lung cancer carcinomas. Cancer Res. 53, 3217–3220 (1993).

    CAS  PubMed  Google Scholar 

  28. Moscatello, D. K. et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res. 55, 5536–5539 (1995).

    CAS  PubMed  Google Scholar 

  29. Rodrigo, J. P., Ramos, S., Lazo, P. S., Alvarez, I. & Suárez, C. Amplification of ERBB oncogenes in squamous cell carcinomas of the head and neck. Eur. J. Cancer 32A, 2004–2010 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Todd, R. et al. TGF-alpha and EGFR receptors mRNAs in uhmann oral cancers. Carcinogenesis 10, 1553–1556 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, W. et al. Interethnic difference in the allelic distribution of human epidermal growth factor receptor intron polymorphism. Clin. Cancer Res. 9, 1009–1012 (2003).

    CAS  PubMed  Google Scholar 

  32. Mendelsohn, J. & Fan Z. Epidermal growth factor receptor family and chemosensitization. J. Natl Cancer Inst. 89, 341–343 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Ke, L. D., Adler-Stortlz, K., Clayman, G. L., Yung, A. W. & Chen, Z. Differential expression of epidermal growth factor receptor in human head and neck cancers. Head Neck 20, 320–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, Z., Ke, L. D., Yuan, X. H. & Adler-Storthz, K. Correlation of cisplatin sensitivity with differential alteration of EGFR expression in head and neck cancer cells. Anticancer Res. 20, 899–902 (2000).

    CAS  PubMed  Google Scholar 

  35. Dittmann, K. et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J. Biol. Chem. 280, 31182–31189 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Lammering, G. et al. Epidermal growth factor receptor as a genetic therapy target for carcinoma cell radiosensitization. J. Natl Cancer Inst. 93, 921–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Bowers, G. et al. The relative role of ErbB1–4 receptor tyrosine kinases in radiation signal transduction responses of human carcinoma cells. Oncogene 20, 1388–1397 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Li, S. et al. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7, 301–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Hadari, Y. R. et al. The IgG1 monoclonal antibody cetuximab induces degradation of the epidermal growth factor receptor [Abstract 234]. Presented at the ASCO Gastrointestinal Cancers Symposium, San Francisco, CA, January 23, 2004.

  40. Choong, N. W. et al. Randomized phase II study of concomitant chemoradiotherapy with 5-fluorouracil-hydroxyurea (FHX) compared to FHX and bevacizumab (BFHX) in intermediate stage head and neck cancer (HNC) [Abstract]. ASCO Meeting Abstracts 25, 6034 (2007).

    Google Scholar 

  41. Huang, S. M., Li, J. & Harari, P. M. Molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after epidermal growth factor receptor blockade. Mol. Cancer Ther. 1, 507–514 (2002).

    CAS  PubMed  Google Scholar 

  42. Baselga J. The EGFR as a target for anticancer therapy—focus on cetuximab. Eur. J. Cancer 37 (Suppl. 4), S16–S22 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Ciardiello, F. et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin. Cancer Res. 7, 1459–1465 (2001).

    CAS  PubMed  Google Scholar 

  44. Huang, S. M. & Harari, P. M. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin. Cancer Res. 6, 2166–2174 (2000).

    CAS  PubMed  Google Scholar 

  45. Milas, L. et al. In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin. Cancer Res. 6, 701–708 (2000).

    CAS  PubMed  Google Scholar 

  46. Bonner, J. A. et al. Enhanced apoptosis with combination C225/radiation treatment serves as the impetus for clinical investigation in head and neck cancers. J. Clin. Oncol. 18 (Suppl. 21), S47–S53 (2000).

    Google Scholar 

  47. Nasu, S., Ang, K. K., Fan, Z. & Milas, L. C225 antiepidermal growth factor receptor antibody enhances tumor radiocurability. Int. J. Radiat. Oncol. Biol. Phys. 51, 474–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Saleh, M. N. et al. Combined modality therapy of A431 human epidermoid cancer using anti-EGFr antibody C225 and radiation. Cancer Biother. Radiopharm. 14, 451–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Huang, S. M., Bock, J. M. & Harari, P. M. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res. 59, 1935–1940 (1999).

    CAS  PubMed  Google Scholar 

  50. Dittmann, K., Mayer, C. & Rodemann, H. P. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother. Oncol. 76, 157–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Krause, M. et al. Decreased repopulation as well as increased reoxygenation contribute to the improvement in local control after targeting of the EGFR by C225 during fractionated irradiation. Radiother. Oncol. 76, 162–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Nyati, M. K. et al. Radiosensitization by pan ErbB inhibitor CI-1033 in vitro and in vivo. Clin. Cancer Res. 10, 691–700 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Gorski, D. H. et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 59, 3374–3378 (1999).

    CAS  PubMed  Google Scholar 

  54. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Peng, D. et al. Anti-epidermal growth factor receptor monoclonal antibody 225 upregulates p27KIP1 and induce G1 rest in prostatic cancer line DU145. Cancer Res. 56, 3666–3669 (1996).

    CAS  PubMed  Google Scholar 

  56. Goldstein, N. I., Prewett, M., Zuklys, K., Rockwell, O. & Mendelsohn, J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res. 1, 1311–1318 (1995).

    CAS  PubMed  Google Scholar 

  57. Kang, X. et al. High affinity Fc receptor binding and potent inhibition of antibody-dependent cellular cytotoxicity (ADCC) in vitro by anti-epidermal growth factor receptor antibody cetuximab [Abstract]. ASCO Meeting Abstracts 25, 3041 (2007).

    Google Scholar 

  58. Kimura, H. et al. Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci. 98, 1275–1280 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Rebucci, M. et al. Mitochondrial effects of combination cetuximab and ionizing radiation in head and neck squamous cell carcinoma cells [Abstract 391]. Eur. J. Cancer 5 (Suppl.) (2007).

  60. Fan, Z., Baselga, J., Masui, H. & Mendelsohn, J. Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res. 53, 4637–4642 (1993).

    CAS  PubMed  Google Scholar 

  61. Brown, D., Wang, R. & Russell, P. Antiepidermal growth factor receptor antibodies augment cytotoxicity of chemotherapeutic agents on squamous cell carcinoma cell lines. Otolaryngol. Head Neck Surg. 122, 75–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Baselga, J. et al. Phase ll multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J. Clin. Oncol. 23, 5568–5577 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Herbst, R. S. et al. Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J. Clin. Oncol. 23, 5578–5587 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Vermorken, J. B. et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J. Clin. Oncol. 25, 2171–2177 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Burtness, B. Cetuximab and cisplatin for chemotherapy-refractory squamous cell cancer of the head and neck. J. Clin. Oncol. 23, 5440–5442 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Bourhis, J. et al. Phase I/II study of cetuximab in combination with cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. J. Clin. Oncol. 24, 2866–2872 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Vermorken, J. B. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 359, 1116–1127 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Yang, X. A., Jia, X. C., Corvalan, J. R., Wang, P. & Davis, C. G. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody for cancer therapy. Crit. Rev. Oncol. Hematol. 38, 17–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Hoy, S. M. & Wagtsaff, A. J. Panitumumab in the treatment of metastatic colorectal cancer. Drugs 66, 2005–2014 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Cohenuram, M. & Saif, M. W. Panitumumab the first fully human monoclonal antibody: from the bench to the clinic. Anticancer Drugs 18, 7–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Yang, X. D. et al. Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res. 59, 1236–1243 (1999).

    CAS  PubMed  Google Scholar 

  73. Foon, K. A. et al. Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int. J. Radiat. Oncol. Biol. Phys. 58, 984–990 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Sartore-Bianchi, A. et al. Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J. Clin. Oncol. 25, 3238–3245 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Sasaki, H. et al. Nras and Kras mutation in Japanese lung cancer patients: Genotyping analysis using LightCycler. Oncol. Rep. 18, 623–628 (2007).

    CAS  PubMed  Google Scholar 

  76. Ruiz-Godoy, R. L. M. et al. Mutational analysis of K-ras and Ras protein expression in larynx squamous cell carcinoma. J. Exp. Clin. Cancer Res. 25, 73–78 (2006).

    CAS  Google Scholar 

  77. Guyre, P. M., Graziano, R. F., Vance, B. A., Morganelli, P. M. & Fanger, M. W. Monoclonal antibodies that bind to distinct epitopes on Fc gamma RI are able to trigger receptor function. J. Immunol. 143, 1650–1655 (1989).

    CAS  PubMed  Google Scholar 

  78. Crombet-Ramos, T., Rak, J., Perez, R. & Viloria-Petit, A. Antiproliferative, antiangiogenic and proapoptotic activity of h-R3: a humanized anti-EGFR antibody. Int. J. Cancer 101, 567–575 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Shenoy, A. M. et al. BIOMAb EGFR TM (nimotuzumab/h-R3) in combination with standard care in squamous cell carcinoma of the head and neck. Presented at the 7th International Conference on head and neck cancer, San Francisco, CA, July 19–23 (2008).

  80. Burger, A. M., Heiss, N. S. & Kreysch, H. The humanized monoclonal anti-EGFR antibody EMD72000 potently inhibits the growth of EGFR-expressing human tumor xenografts insensitive to chemotherapeutic drugs. Proc. Am. Assoc. Cancer Res. 44, 5719 (2003).

    Google Scholar 

  81. Modjtahedi, H. et al. Phase I trial and tumour localization of the anti-EGFR monoclonal antibody ICR62 in head and neck or lung cancer. Br. J. Cancer 73, 228–235 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. [No authors listed] An open-Labeled trial with a dose-escalation part and a parallel group design investigating zalutumumab, an anti-EGF receptor antibody, in combination with chemo-radiation as first line treatment of patients with cancer of the head and neck. ClinicalTrials.gov [online November 2006] http://www.clinicaltrials.gov/ct2/show/NCT00401401?term=zalutumumab&rank=4.

  83. Wakeling, A. E. et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signalling with potential for cancer therapy. Cancer Res. 62, 5749–5754 (2002).

    CAS  PubMed  Google Scholar 

  84. Rojo, F. et al. Pharmacodynamic studies of tumor biopsy specimens from patients with advanced gastric carcinoma. J. Clin. Oncol. 24, 4309–4316 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Magne, N. et al. Influence of epidermal growth factor receptor (EGFR), p53 and intrinsic MAP kinase pathway status of tumour cells on the antiproliferative effect of Z1839 (Iressa). Br. J. Cancer 86, 1518–1523 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eccles, S. A. et al. What are the determinants of response to EGFR signalling inhibitors in HNSCC? Eur. J. Cancer 5, (ECCO 14 abstract 49) (2007).

  87. Servidei, T., Riccardi, A., Mozzetti, S., Ferlini, C. & Riccardi, R. Chemoresistant tumor cell lines display altered epidermal growth factor receptor and HER3 signaling and enhanced sensitivity to gefitinib. Int. J. Cancer, 123, 2939–2949 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Pollack, V. A. et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358 774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharmacol. Exp. Ther. 291, 739–748 (1999).

    CAS  PubMed  Google Scholar 

  89. Bozec, A. et al. Combined effects of bevacizumab with erlotinib and irradiation: a preclinical study on a head and neck cancer orthotopic model. Br. J. Cancer 99, 93–99 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xia, W., Liu, L. H., Ho, P. & Spector, N. L. Truncated ErbB2 receptor (p95ErbB2) is regulated by heregulin through heterodimer formation with ErbB3 yet remains sensitive to the dual EGFR/ErbB2 kinase inhibitor GW572016. Oncogene 23, 646–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Spector, N. L. et al. Study of the biologic effects of lapatinib, a reversible inhibitor of erbB-1 and erbB-2 tyrosine kinase, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol. 23, 2502–2512 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Rusnak, D. W. et al. The effects of the novel, reversible epidermal growth factor receptor/erbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther. 1, 85–94 (2001).

    CAS  PubMed  Google Scholar 

  93. Wood, E. R. et al. A unique structure for epidermal growth factor receptor bound to GW572016 (lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 64, 6662–6659 (2004).

    Article  Google Scholar 

  94. Kane, M. A. et al. Phase II study of 250 mg gefitinib in advanced squamous cell carcinoma of the head and neck (SCCHN) [Abstract]. ASCO Meeting Abstracts 22, 5586 (2004).

    Google Scholar 

  95. Soulieres, D. et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J. Clin. Oncol. 22, 77–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Matar, P. et al. Combined anti-epidermal growth factor receptor (EGFR) treatment with a tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) and a monoclonal antibody (IMC-C225): evidence of synergy. Proc. Am. Assoc. Cancer Res. 64, 800 (2004).

    Google Scholar 

  97. Huang, S., Armstrong, E. A., Benavente, S., Chinnaiyan, P. & Harari, P. M. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res. 64, 5355–5362 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Williams, K. J. et al. Combining radiotherapy with AZD2171, a potent inhibitor of vascular endothelial growth factor signaling: pathophysiologic effects and therapeutic benefit. Mol. Cancer Ther. 6, 599–606 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Perrotte, P. et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res. 2, 257–265 (1999).

    Google Scholar 

  100. Woodburn, J. R. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther. 82, 241–250 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Hirata, A. et al. ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res. 62, 2554–2560 (2002).

    CAS  PubMed  Google Scholar 

  102. Wedge, S. R. et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer signalling: Cancer Res. 65, 4389–4400 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Raben, D. et al. Antitumour activity of ZD6126, a novel vascular-targeting agent, is enhanced when combined with ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, and potentiates the effects of radiation in a human non-small cell lung cancer xenograft model. Mol. Cancer Ther. 3, 977–983 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Yigitbasi, O. G. et al. Tumor cell and endothelial cell therapy of oral cancer by dual tyrosine kinase receptor blockade. Cancer Res. 64, 7977–7794 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Williams, K. J. et al. ZD6474, a potent inhibitor of vascular endothelial growth factor signaling, combined with radiotherapy: schedule-dependent enhancement of antitumor activity. Clin. Cancer Res. 10, 8587–8593 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Choe, M. S., Chen, Z., Klass, C. M., Zhang, X. & Shin, D. M. Enhancement of docetaxel-induced cytotoxicity by blocking epidermal growth factor receptor and cyclooxygenase-2 pathways in squamous cell carcinomas of the head and neck. Clin. Cancer Res. 13, 3015–3023 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Kubicek, J. G. et al. Phase I trial of bortezomib (VELCADE), cisplatin and radiotherapy for advanced head and neck cancer [Abstract]. ASCO Meeting Abstracts 26, 6028 (2008).

    Google Scholar 

  108. Bernier, J. et al. Consensus guidelines for the management of radiation dermatitis and co-existing acne-like rash in patients receiving radiotherapy plus EGFR inhibitors for the treatment of squamous cell carcinoma of the head and neck. Ann. Oncol. 19, 142–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Segaert, S. et al. The management of skin reactions in cancer patients receiving epidermal growth factor receptor targeted therapies. J. Dtsch Dermatol. Ges. 3, 599–606 (2005).

    Article  PubMed  Google Scholar 

  110. Segaert, S. & Van Cutsem, E. Clinical signs, pathophysiology and management of skin toxicity during therapy with epidermal growth factor receptor inhibitors. Ann. Oncol. 16, 1425–1433 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Lacouture, M. E. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat. Rev. Cancer 6, 803–812 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Jost, M., Kari, C. & Rodeck, U. The EGF receptor—an essential regulator of multiple epidermal functions. Eur. J. Dermatol. 10, 505–510 (2000).

    CAS  PubMed  Google Scholar 

  113. Busam, K. J. et al. Cutaneous side-effects in cancer patients treated with the antiepidermal growth factor receptor antibody C225. Br. J. Dermatol. 144, 1169–1176 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Jacot, W. et al. Acneiform eruption induced by epidermal growth factor receptor inhibitors in patients with solid tumors. Br. J. Dermatol. 151, 238–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Curran, D. et al. Quality of life in head and neck cancer patients after treatment with high-dose radiotherapy alone or in combination with cetuximab. J. Clin. Oncol. 25, 2191–2197 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. He, Y. et al. Inhibition of human squamous cell carcinoma growth in vivo by epidermal growth factor receptor antisense RNA transcribed from U6 promoter. J. Natl Cancer Inst. 90, 1080–1087 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Rubin Grandis, J. R. et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J. Natl Cancer Inst. 90, 824–828 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Schmidt, M. & Wels, W. Targeted inhibition of tumour cell growth by a bispecific single-chain toxin containing an antibody domain and TGF alpha. Br. J. Cancer 74, 853–862 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mishra, G., Liu, T. F. & Frankel, A. E. Recombinant toxin DAB389RGF is cytotoxic to human pancreatic cancer cells. Expert Opin. Biol. Ther. 3, 1173–1180 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Masuelli, L. et al. Gene-specific inhibition of breast carcinoma in BALB-neuT mice by active immunization with rat Neu or human ErbB receptors. Int. J. Oncol. 30, 381–392 (2007).

    CAS  PubMed  Google Scholar 

  121. Vokes, E. E. et al. A phase I dose escalation study of Ad GV.EGR.TNF.11D (TNFerade) with concurrent chemoradiotherapy in patients with recurrent head and neck cancer [Abstract]. ASCO Meeting Abstracts 26, 6067 (2008).

    Google Scholar 

  122. Fujikawa, T. et al. Cimetidine inhibits epidermal growth factor-induced cell signaling. J. Gastroenterol. Hepatol. 22, 436–443 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Argiris, A. E. et al. Phase II trial of neoadjuvant docetaxel (T), cisplatin (P), and cetuximab followed by concurrent radiation (X), P, and E in locally advanced head and neck cancer (HNC) [Abstract]. ASCO Meeting Abstracts 26, 6002 (2008).

    Google Scholar 

  124. Tishler, R. B. et al. Cetuximab added to docetaxel, cisplatin, 5-fluorouracil induction chemotherapy (C-TPF) in patients with new diagnosed locally advanced head and neck cancer: A phase I study [Abstract]. ASCO Meeting Abstracts 26, 6001 (2008).

    Google Scholar 

  125. Bonnin, N. et al. Efficacy of neoadjuvant TPF (nTPF : docetaxel, T ; cisplatin: P; 5FU) in non selected patients with head and neck cancer and subsequent radiotherapy combined with chemotherapy and cetuximab [Abstract]. ASCO Meeting Abstracts 26, 6074 (2008).

    Google Scholar 

  126. Langer, C. J. et al. Preliminary analysis of ECOG 3303: concurrent radiation, cisplatin, and cetuximab in unresectable, locally advanced squamous cell carcinoma of the head and neck [Abstract]. ASCO Meeting Abstracts 26, 6006 (2008).

    Google Scholar 

  127. [No authors listed] A phase II randomized trial of surgery followed by chemoradiotherapy plus cetuximab for advanced squamous cell carcinoma of the head and neck. ClincialTrials.gov [online April 2004] http://www.clinicaltrials.gov/ct2/show/NCT00084318?term=cetuximab +%2B+radiotherapy+%2B+docetaxel+%2B+cisplatin&rank=4.

  128. Wirth, L. J. et al. Phase I study of panitumumab + chemoradiotherapy for head and neck cancer [Abstract]. ASCO Meeting Abstracts 26, 6007 (2008).

    Google Scholar 

  129. [No authors listed.] A randomised, double-blind, placebo-controlled, multicentre, phase III study of post-operative adjuvant lapatinib or placebo and concurrent chemoradiotherapy followed by maintenance lapatinib or placebo monotherapy in high-risk subjects with resected squamous cell carcinoma of the head and neck (SCCHN). ClinicalTrials.gov [online December 2006] http://www.clinicaltrials.gov/ct2/show/ NCT00424255?term=lapatinib+AND+postoperative&rank=1.

  130. Arias de la Vega, F. et al. Erlotinib and chemoradiation in patients with surgically resected locally advanced squamous head and neck cancer: a GICOR phase I study [Abstract]. ASCO Meeting Abstracts 26, 6068 (2008).

    Google Scholar 

  131. [No authors listed.] CARISSA Trial—multicenter randomized phase II trial comparing post-operative radiotherapy and cisplatin alone or in combination with the EGFR inhibitor ZD 1839 (Iressa) in upper aerodigestive tract carcinomas. ClinicalTrials.gov [online September 2005] http://www.clinicaltrials.gov/ct2/show/NCT00169221?term=carissa&rank=1.

  132. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non small cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Lee, J. W. et al. Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck. Clin. Cancer Res. 11, 2879–2882 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Cappuzzo, F. et al. Epidermal growth factor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl Cancer Inst. 97, 643–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Amador, M. L. et al. An epidermal growth factor receptor intron 1 polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res. 64, 9139–9143 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Hirsch, F. R. et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity in gefitinib in patients with bronchoalveolar carcinoma subtypes: a Southwest Oncology Group Study. J. Clin. Oncol. 23, 6838–6845 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Takano, T. et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small cell lung cancer. J. Clin. Oncol. 23, 6829–6837 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Johnson, B. E. & Jänne, P. A. Selecting patients for epidermal growth factor receptor inhibitor treatment: a FISH story or a tale of mutations? J. Clin. Oncol. 23, 6813–6816 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Kumar, B. et al. EGFR, p16, HPV titer, bcl-xL and p53, sex, and smoking as indicators of response to therapy and survival in oropharyngeal cancer. J. Clin. Oncol. 26, 3128–3137 (2008).

    Article  PubMed  Google Scholar 

  142. Milas, L. et al. Importance of maintenance therapy in C225-induced enhancement of tumor control by fractionated radiation. Int. J. Radiat. Oncol. Biol. Phys. 67, 568–572 (2007).

    Article  PubMed  Google Scholar 

  143. Robert, F. et al. Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J. Clin. Oncol. 19, 3234–3243 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Su, Y. B. et al. Concurrent cetuximab, cisplatin, and radiotherapy (RT) for loco-regionally advanced squamous cell carcinoma of the head and neck (SCCHN): updated results of a novel combined modality paradigm [Abstract]. ASCO Meeting Abstracts 23, 5529 (2005).

    Google Scholar 

  145. Merlano, M. C. et al. Cetuximab (C-mab) and chemo-radiation (CT-RT) for loco-regional advanced squamous cell carcinoma of the head and neck (HNC): A phase II study [Abstract]. ASCO Meeting Abstracts 25, 6043 (2007).

    Google Scholar 

  146. Kuhnt, T. et al. Concomitant hyperfractionated accelerated radiotherapy (HART) with cisplatin and concurrent cetuximab for locoregionally advanced squamous cell head and neck cancer: a phase I dose escalation trial [Abstract]. ASCO Meeting Abstracts 26, 6029 (2008).

    Google Scholar 

  147. Savvides, P. et al. Phase II study of bevacizumab with docetaxel and radiation in locally advanced head and neck squamous cell cancer. Presented at the 7th International Conference on head and neck cancer, San Francisco, CA, July 19–23 (2008).

  148. Herchenhorn, D. et al. Phase II study of erlotinib combined with cisplatin and radiotherapy for locally advanced squamous cell carcinoma of the head and neck (SCCHN) [Abstract]. ASCO Meeting Abstracts 25, 6033 (2007).

    Google Scholar 

  149. Cohen, E. E. et al. Integration of gefitinib (G.), in to a concurrent chemoradiation (CRT) regimen followed by G. adjuvant therapy in patients with locally advanced head and neck cancer (HNC)—a phase II trial [Abstract]. ASCO Meeting Abstracts 23, 5506 (2005).

    Google Scholar 

  150. Chen, C. et al. Phase I trial of gefitinib in combination with radiation or chemoradiation for patients with locally advanced squamous cell head and neck cancer. J. Clin. Oncol. 25, 4880–4886 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Rueda, A. et al. Gefitinib plus concomitant boost accelerated radiation (AFX-CB) and concurrent weekly cisplatin for locally advanced unresectable squamous cell head and neck carcinomas (SCCHN): A phase II study [Abstract]. ASCO Meeting Abstracts 25, 6031 (2007).

    Google Scholar 

  152. Adelstein, D. J. et al. Concurrent chemoradiotherapy and gefitinib for locoregionally advanced head and neck squamous cell cancer. Presented at the 7th International Conference on head and neck cancer, San Francisco, CA, July 19–23 (2008).

  153. Doss, H. H. et al. Induction chemotherapy + gefitinib followed by concurrent chemotherapy/radiation therapy/gefitinib for patients (pts) with locally advanced squamous cell carcinoma of the head and neck: A phase I/II trial of the Minnie Pearl Cancer Research Network [Abstract]. ASCO Meeting Abstracts 24, 5543 (2006).

    Google Scholar 

  154. Ahmed, S. M. et al. Updated results of a phase II trial integrating gefitinib (G.) into concurrent chemoradiation (CRT) followed by G. adjuvant therapy for locally advanced head and neck cancer (HNC) [Abstract]. ASCO Meeting Abstracts 25, 6028 (2007).

    Google Scholar 

  155. El-Hariry, I., Harrington, K., Bourhis, J. & Holford, C. A phase I, open-label, dose escalation study (EGF 100262) of lapatinib plus chemoradiation in patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN) [Abstract 91]. Radiother. Oncol. 82, S30 (2007).

    Article  Google Scholar 

  156. Chan, A. T. C. et al. A phase II study of cetuximab (C225) in combination with carboplatin in patients(pts) with recurrent or metastatic nasopharyngeal carcinoma (NPC) who failed to a platinum-based chemotherapy [Abstract]. ASCO Meeting Abstracts 22, 2000 (2003).

    Google Scholar 

  157. Hitt, R. et al. Phase II study of combination cetuximab and weekly paclitaxel in patients with metastatic/recurrent squamous cell carcinoma of head and neck (SCCHN): Spanish Head and Neck Cancer Group (TTCC) [Abstract]. ASCO Meeting Abstracts 25, 6012 (2007).

    Google Scholar 

  158. Knoedeler, M. et al. Phase II trial to evaluate efficacy and toxicity of cetuximab plus docetaxel in platinum pretreated patients with recurrent and/or metastatic head and neck cancer [Abstract]. ASCO Meeting Abstracts 26, 6066 (2008).

    Google Scholar 

  159. Kies, M. S. et al. Cetuximab and bevacizumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: an interim analysis. ASCO Meeting Abstracts 26, 6072 (2008).

    Google Scholar 

  160. Kirby, A. M. et al. Gefitinib (ZD1839, Iressa) as palliative treatment in recurrent and metastatic head and neck cancer. Br. J. Cancer 94, 631–636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chua, D. T., Sham, J. & Au, G. A phase II trial of gefitinib in recurrent and metastatic nasopharyngeal carcinoma pretreated with platinum-based chemotherapy [Abstract]. ASCO Meeting Abstracts 25, 6042 (2007).

    Google Scholar 

  162. Cohen, E. E. et al. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J. Clin. Oncol. 21, 1980–1987 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Wheeler, R. H. et al. Clinical and molecular phase II study of gefitinib in patients with recurrent squamous cell cancer of the head and neck [Abstract]. ASCO Meeting Abstracts 25, 5531 (2005).

    Google Scholar 

  164. Wirth, L. J. et al. Phase I study of gefitinib plus celecoxib in patients with metastatic and/or locally recurrent squamous cell carcinoma of the head and neck (SCCHN) [Abstract]. ASCO Meeting Abstracts 22, 5540 (2004).

    Google Scholar 

  165. Vokes, E. E. et al. A phase I study of erlotinib and bevacizumab for recurrent or metastatic squamous cell carcinoma of the head and neck (HNC) [Abstract]. ASCO Meeting Abstracts 23, 5504 (2005).

    Google Scholar 

  166. Kim, E. S. et al. Phase II study of combination cisplatin, docetaxel and erlotinib in patients with metastatic/recurrent head and neck squamous cell carcinoma (HNSCC) [Abstract]. ASCO Meeting Abstracts 25, 5546 (2005).

    Google Scholar 

  167. Mauer, A. M. et al. Phase I study of epidermal growth factor receptor (RGFR) inhibitor, erlotinib, and vascular endothelial growth factor monoclonal antibody, bevacizumab, in recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) [Abstract]. ASCO Meeting Abstracts 22, 5539 (2004).

    Google Scholar 

  168. Abidoye, O. O. et al. Phase II study of GW572016 in squamous cell carcinoma of the head and neck [Abstract]. ASCO Meeting Abstracts 24, 5568 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Bernier.

Ethics declarations

Competing interests

Jacques Bernier is a consultant for Amgen, GlaxoSmithKline, Merck Serono and Sanofi–Aventis, and is also on the speakers bureau for Amgen, Merck Serono and Sanofi–Aventis. Jan B. Vermorken is a consultant and is on the speakers bureau for Amgen, Merck Serono and Sanofi–Aventis. Søren M. Bentzen declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernier, J., Bentzen, S. & Vermorken, J. Molecular therapy in head and neck oncology. Nat Rev Clin Oncol 6, 266–277 (2009). https://doi.org/10.1038/nrclinonc.2009.40

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.40

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing