Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of the thermal Casimir force

Abstract

Quantum theory predicts the existence of the Casimir force between macroscopic bodies, a force arising from the zero-point energy of electromagnetic field modes around them. A thermal Casimir force, due to thermal rather than quantum fluctuations of the electromagnetic field at finite temperature, was theoretically predicted long ago. Here we report the experimental observation of the thermal Casimir force between two gold plates. We measured the attractive force between a flat and a spherical plate for separations between 0.7 μm and 7 μm. An electrostatic force caused by potential patches on the plates’ surfaces is included in the analysis. Previous measurements of the quantum-fluctuation-induced force have been unable to clearly settle the question of whether the correct low-frequency form of the dielectric constant dispersion for calculating Casimir forces is the Drude model or the plasma model. Our experimental results are in excellent agreement (reduced χ2 of 1.04) with the Casimir force calculated using the Drude model, including the T=300 K thermal force, which dominates over the quantum fluctuation-induced force at separations greater than 3 μm. The plasma model result is excluded in the measured separation range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Experimental results for the total short-range force between gold plates.
Figure 3: The short-range force data corrected for an electrostatic force with Vrms=5.4 mV.

Similar content being viewed by others

References

  1. Casimir, H. B. G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793–795 (1948).

    MATH  Google Scholar 

  2. Sparnaay, M. Measurements of attractive forces between flat plates. Physica 24, 751–764 (1958).

    Article  ADS  Google Scholar 

  3. Lamoreaux, S. K. Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett. 78, 5–8 (1997).

    Article  ADS  Google Scholar 

  4. Lamoreaux, S. K. Casimir forces: Still surprising after 60 years. Phys. Today 60, 40–45 (February, 2007).

    Article  Google Scholar 

  5. Milonni, P. The Quantum Vacuum : An Introduction to Quantum Electrodynamics (Academic, 1994).

    Book  Google Scholar 

  6. Bressi, G., Carugno, G., Onofrio, R. & Ruoso, G. Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002).

    Article  ADS  Google Scholar 

  7. Derjaguin, B. V. Untersuchungen über die Reibung und adhäsion, IV. Kolloid-Z. 69, 155–164 (1934).

    Article  Google Scholar 

  8. Blocki, J., Randrup, J., Swiatecki, W. J. & Tsang, C. F. Proximity forces. Ann. Phys. 105, 427–462 (1977).

    Article  ADS  Google Scholar 

  9. Lifshitz, E. M. The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–83 (1956).

    Google Scholar 

  10. Sabisky, E. S. & Anderson, C. H. Verification of the Lifshitz theory of the van der Waals potential using liquid-helium films. Phys. Rev. A 7, 790–806 (1973).

    Article  ADS  Google Scholar 

  11. Mohideen, U. & Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett. 81, 4549–4552 (1998).

    Article  ADS  Google Scholar 

  12. Chan, H. B., Aksyuk, V. A., Kleiman, R. N., Bishop, D. J. & Capasso, F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 291, 1941–1944 (2001).

    Article  ADS  Google Scholar 

  13. Decca, R. S., López, D., Fischbach, E. & Krause, D. E. Measurement of the Casimir force between dissimilar metals. Phys. Rev. Lett. 91, 050402 (2003).

    Article  ADS  Google Scholar 

  14. Kim, W. J., Sushkov, A. O., Dalvit, D. A. R. & Lamoreaux, S. K. Measurement of the short-range attractive force between Ge plates using a torsion balance. Phys. Rev. Lett. 103, 060401 (2009).

    Article  ADS  Google Scholar 

  15. Feiler, A. A., Bergstrom, L. & Rutland, M. W. Superlubricity using repulsive van der Waals forces. Langmuir 24, 2274–2276 (2008).

    Article  Google Scholar 

  16. Munday, J. N., Capasso, F. & Parsegian, V. A. Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170–173 (2009).

    Article  ADS  Google Scholar 

  17. Obrecht, J. M. et al. Measurement of the temperature dependence of the Casimir–Polder force. Phys. Rev. Lett. 98, 063201 (2007).

    Article  ADS  Google Scholar 

  18. Bostrom, M. & Sernelius, B. E.. Thermal effects on the Casimir force in the 0.1–5 μm range. Phys. Rev. Lett. 84, 4757–4760 (2000).

    Article  ADS  Google Scholar 

  19. Brevik, I., Aarseth, J. B., Hoye, J. S. & Milton, K. A. Temperature dependence of the Casimir effect. Phys. Rev. E 71, 056101 (2005).

    Article  ADS  Google Scholar 

  20. Bezerra, V. B., Klimchitskaya, G. L., Mostepanenko, V. M. & Romero, C. Violation of the Nernst heat theorem in the theory of the thermal Casimir force between Drude metals. Phys. Rev. A 69, 022119 (2004).

    Article  ADS  Google Scholar 

  21. Decca, R. S. et al. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys. 318, 37–80 (2005).

    Article  ADS  Google Scholar 

  22. Kittel, C. & Kroemer, H. Thermal Physics (W. H. Freeman, 1980).

    Google Scholar 

  23. Langer, S. A. & Sethna, J. P. Entropy of glasses. Phys. Rev. Lett. 61, 570–573 (1988).

    Article  ADS  Google Scholar 

  24. Intravaia, F. & Henkel, C. Casimir interaction from magnetically coupled eddy currents. Phys. Rev. Lett. 103, 130405 (2009).

    Article  ADS  Google Scholar 

  25. Robertson, N. A. et al. Kelvin probe measurements: Investigations of the patch effect with applications to ST-7 and LISA. Class. Quantum Gravity 23, 2665–2680 (2006).

    Article  ADS  Google Scholar 

  26. Robertson, N. A. Report LIGO-G070481-00-R (available at http://www.ligo.caltech.edu/docs/G/G070481-00.pdf) (2007).

  27. Antonini, P. et al. An experimental apparatus for measuring the Casimir effect at large distances. J. Phys. Conf. Ser. 161, 012006 (2009).

    Article  Google Scholar 

  28. Speake, C. C. & Trenkel, C. Forces between conducting surfaces due to spatial variations of surface potential. Phys. Rev. Lett. 90, 160403 (2003).

    Article  ADS  Google Scholar 

  29. Kim, W. J., Sushkov, A. O., Dalvit, D. A. R. & Lamoreaux, S. K. Surface contact potential patches and Casimir force measurements. Phys. Rev. A 81, 022505 (2010).

    Article  ADS  Google Scholar 

  30. Lamoreaux, S. K. Reanalysis of Casimir force measurements in the 0.6-to-6-μm range. Phys. Rev. A 82, 024102 (2010).

    Article  ADS  Google Scholar 

  31. Yashchuk, V. V. et al. Surface roughness of stainless-steel mirrors for focusing soft X rays. Appl. Opt. 45, 4833–4842 (2006).

    Article  ADS  Google Scholar 

  32. Yashchuk, V. V. et al. in Nano- and Micro-Metrology Vol. 5858 (eds Ottevaere, H., DeWolf, P. & Wiersma, D. S.) 58580A-12 (SPIE,2005).

    Google Scholar 

  33. Rossi, F. Contact potential measurement: Spacing-dependence errors. Rev. Sci. Instrum. 63, 4174–4181 (1992).

    Article  ADS  Google Scholar 

  34. Cheran, L., Johnstone, S., Sadeghi, S. & Thompson, M. Work-function measurement by high-resolution scanning Kelvin nanoprobe. Meas. Sci. Technol. 18, 567–578 (2007).

    ADS  Google Scholar 

  35. Palik, E. D. (ed.) Handbook of Optical Constants of Solids (Academic, 1998).

Download references

Acknowledgements

The authors thank V. Yashchuk for performing the surface roughness measurements, and acknowledge discussions with S. Eckel and F. Intravaia. This work was supported by the DARPA/MTOs Casimir Effect Enhancement project under SPAWAR Contract No. N66001-09-1-2071.

Author information

Authors and Affiliations

Authors

Contributions

A.O.S. performed data analysis and prepared the manuscript. W.J.K. carried out optical property measurements, theoretical force calculations, and programming for data acquisition. D.A.R.D. provided theoretical support and calculations. S.K.L. performed data acquisition, programming and calibrations.

Corresponding author

Correspondence to A. O. Sushkov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sushkov, A., Kim, W., Dalvit, D. et al. Observation of the thermal Casimir force. Nature Phys 7, 230–233 (2011). https://doi.org/10.1038/nphys1909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing