Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Fractionalize this

Precisely what are the electrons in a high-temperature superconductor doing before they superconduct? Strong electronic correlations may give rise to composite rather than fractionalized excitations, as is typical in other strongly coupled systems such as quark matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram and anomalous transport in the cuprate high-temperature superconductors.

References

  1. Doiron-Leyraud, N. et al. Nature 447, 565–568 (2007).

    Article  ADS  Google Scholar 

  2. Fournier, D. et al. Nature Phys. 10.1038/nphys1763 (2010).

  3. Norman, M. R. et al. Nature 392, 157–160 (1998).

    Article  ADS  Google Scholar 

  4. Damascelli, A. et al. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  5. Hertz, J. A. Phys. Rev. B 14, 1165–1184 (1976).

    Article  ADS  Google Scholar 

  6. Phillips, P. & Chamon, C. Phys. Rev. Lett. 95, 107002 (2005).

    Article  ADS  Google Scholar 

  7. Varma, C. M. et al. Phys. Rev. Lett. 63, 1996–1999 (1989).

    Article  ADS  Google Scholar 

  8. Aji, V. et al. Phys. Rev. B 81, 064515 (2010).

    Article  ADS  Google Scholar 

  9. Faulkner, T. Science 329, 1043–1047 (2010).

    Article  ADS  Google Scholar 

  10. Chen, C. T. et al. Phys. Rev. Lett. 66, 104–107 (1991).

    Article  ADS  Google Scholar 

  11. Meinders, M. B. J. et al. Phys. Rev. B 48, 3916–3926 (1993).

    Article  ADS  Google Scholar 

  12. Phillips, P. Rev. Mod. Phys. 82, 1719–1742 (2010).

    Article  ADS  Google Scholar 

  13. Leigh, R. G. et al. Phys. Rev. Lett. 77, 014512 (2008).

    Google Scholar 

  14. Anderson, P. W. J. Phys. Cond. Matt. 16, R755–R769 (2004).

    Article  Google Scholar 

  15. Chakraborty, S. et al. Phys. Rev. B 81, 235135 (2010).

    Article  ADS  Google Scholar 

  16. Harris, A. B. & Lange, R. V. Phys. Rev. 157, 295–314 (1967).

    Article  ADS  Google Scholar 

  17. Lin, J. Y. et al. Preprint at http://arXiv.org/abs/1009.2560 (2010).

  18. Vidhyadhiraja, N. S. et al. Phys. Rev. Lett. 102, 206407 (2009).

    Article  ADS  Google Scholar 

  19. Chernyshev, A. L. et al. Phys. Rev. B 70, 235111 (2004).

    Article  ADS  Google Scholar 

  20. Mott, N. F. Proc. Phys. Soc. Sec. A 62, 416–422 (1949).

    Article  ADS  Google Scholar 

  21. Kohn, W. Phys. Rev. 133, A171–181 (1964).

    Article  ADS  Google Scholar 

  22. Kaplan, T. A., Horsch, P. & Fulde, P. Phys. Rev. Lett. 49, 889–892 (1982).

    Article  ADS  Google Scholar 

  23. Ando, Y. et al. Phys. Rev. Lett. 92, 197001 (2004).

    Article  ADS  Google Scholar 

  24. Gor'kov, L. P. & Tietel'baum, G. B. Phys. Rev. Lett. 97, 247003 (2006).

    Article  ADS  Google Scholar 

  25. Chakraborty, S. & Phillips, P. Phys. Rev. B 80, 132505 (2009).

    Article  ADS  Google Scholar 

  26. Edalati, M., Leigh, R. G. & Phillips, P. Preprint at http://arXiv.org/abs/1010.3238 (2010).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, P. Fractionalize this. Nature Phys 6, 931–933 (2010). https://doi.org/10.1038/nphys1881

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing