Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Chasing gravitational waves

The Laser Interferometer Gravitational Wave Observatory in the USA is searching for gravitational-wave emissions from cataclysmic astrophysical events. The task has required the construction of the world's largest and most sensitive optical strain sensor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The optical layout of the LIGO interferometers showing major components, including the laser, electro–optic modulators (EOM), Faraday isolator (FI), mode-cleaner filter cavity, mode-matching telescope (MMT), the interferometer mirror components, and length- and alignment-sensing photodiodes and quadrant sensors.

LIGO Scientific Collaboration

Figure 2: The effect of the passage of a gravitational wave on a ring of freely falling particles (green spheres) and on the lengths of the arms of an interferometer.
Figure 3: The strain amplitude spectral densities of the LIGO Hanford 4-km interferometer (pale blue curve), the Livingston 4-km interferometer (green curve) and the Hanford 2-km interferometer (red curve) during LIGO's fifth science run.

References

  1. Weisberg, J. M. & Taylor, J. H. in Binary Radio Pulsars (eds Rasio, F. & Stairs, I.) 25–31 (San Francisco, Astronomical Society of the Pacific, 2005).

    Google Scholar 

  2. Thorne, K. S. in 300 Years of Gravitation (eds Hawking, S. W. & Israel, W.) 330–458 (Chicago, Univ. of Chicago Press, 1987).

    Google Scholar 

  3. O'Shaughnessy, R., Kim, C., Kalogera, V. & Belczynski, K. Astrophys. J. 672, 479–488 (2008).

    Article  ADS  Google Scholar 

  4. Gehrels, N. et al. Nature 437, 851–854 (2005).

    Article  ADS  Google Scholar 

  5. Zwerger, T. & Müller, E. Astron. Astrophys. 320, 209–227 (1997).

    ADS  Google Scholar 

  6. Bildsten, L. Astrophys. J. 501, L89–L93 (1998).

    Article  ADS  Google Scholar 

  7. Maggiore, M. Phys. Rep. 331, 283–367 (2000).

    Article  ADS  Google Scholar 

  8. Einstein, A. Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math. Physik u. Tech. 688–696 (1916).

  9. Einstein, A. Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math. Physik u. Tech. 154–167 (1918).

  10. Misner, C., Thorne, K. & Wheeler, J. Gravitation (New York, W. H. Freeman, 1973).

    Google Scholar 

  11. Saulson, P. R. Fundamentals of Gravitational Wave Detectors (New Jersey, World Scientific, 1994).

    Book  Google Scholar 

  12. Saulson, P. R. Am. J. Phys. 65, 501–505 (1997).

    Article  ADS  Google Scholar 

  13. Weiss, R. Quarterly Progress Report, MIT Radiation Laboratory of Electronics 105, 54–76 <http://www.ligo.caltech.edu/docs/P/P720002-00.pdf> (1972).

    Google Scholar 

  14. Abbott, R. et al. Nuc. Instr. Meth. A 517, 154–179 (2004).

    Article  ADS  Google Scholar 

  15. Drever, R. W. P. et al. Appl. Phys. B 31, 97–105 (1983).

    Article  ADS  Google Scholar 

  16. Lawrence, R., Ottaway, D., Zucker, M. & Fritschel, P. Opt. Lett. 29, 2635–2637 (2004).

    Article  ADS  Google Scholar 

  17. Fritschel, P. et al. Appl. Opt. 40, 4988–4998 (2001).

    Article  ADS  Google Scholar 

  18. Evans, M. et al. Opt. Lett. 27, 598–600 (2001).

    Article  ADS  Google Scholar 

  19. Fritschel, P. et al. Appl. Opt. 37, 6734–6747 (1998).

    Article  ADS  Google Scholar 

  20. Abbott, B. et al. Astrophys. J. 659, 918–930 (2007).

    Article  ADS  Google Scholar 

  21. Abbott, B. et al. Astrophys. J. Lett. 683, L45–L49 (2008).

    Article  ADS  Google Scholar 

  22. Acernese, F. et al. Class. Quant. Grav. 25, 114045 (2008).

    Article  ADS  Google Scholar 

  23. http://www.virgo.infn.it

  24. Grote, H. Class. Quant. Grav. 25, 114043 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  25. http://geo600.aei.mpg.de

  26. Strain, K. A. & Meers, B. J. Phys. Rev. Lett. 66, 1391–1394 (1991).

    Article  ADS  Google Scholar 

  27. http://www.ligo.caltech.edu/advLIGO

  28. http://www.cascina.virgo.infn.it/advirgo

  29. Willke, B. et al. Class. Quant. Grav. 23, S207–S214 (2008).

    Article  Google Scholar 

  30. Kuroda, K. Class. Quant. Grav. 23, S215–S221 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reitze, D. Chasing gravitational waves. Nature Photon 2, 582–585 (2008). https://doi.org/10.1038/nphoton.2008.186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing