Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Injectable nanocarriers for biodetoxification

Abstract

Hospitals routinely treat patients suffering from overdoses of drugs or other toxic chemicals as a result of illicit drug consumption, suicide attempts or accidental exposures. However, for many life-threatening situations, specific antidotes are not available and treatment is largely based on emptying the stomach, administering activated charcoal or other general measures of intoxication support. A promising strategy for managing such overdoses is to inject nanocarriers that can extract toxic agents from intoxicated tissues. To be effective, the nanocarriers must remain in the blood long enough to sequester the toxic components and/or their metabolites, and the toxin bound complex must also remain stable until it is removed from the bloodstream. Here, we discuss the principles that govern the use of injectable nanocarriers in biodetoxification and review the pharmacological performance of a number of different approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treating drug overdose and chemical poisoning with nanocarriers.
Figure 2: Schematic representation of two vesicular nanostructures used in detoxification.
Figure 3: Heart-rate recovery after intoxication and addition of a nanocarrier.

Similar content being viewed by others

References

  1. Watson, W. A. et al. 2004 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am. J. Emerg. Med. 23, 589–666 (2005).

    Article  Google Scholar 

  2. Mokhlesi, B., Leiken, J. B., Murray, P. & Corbridge, T. C. Adult toxicology in critical care - Part I: general approach to the intoxicated patient. Chest 123, 577–592 (2003).

    Article  Google Scholar 

  3. Zimmerman, J. L. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit. Care Med. 31, 2794–2801 (2003).

    Article  Google Scholar 

  4. Babu Dhanikula, A., Lafleur, M. & Leroux, J. C. Characterization and in vitro evaluation of spherulites as sequestering vesicles with potential application in drug detoxification. Biochim. Biophys. Acta 1758, 1787–1796 (2006).

    Article  Google Scholar 

  5. Breyer-Pfaff, U. The metabolic fate of amitriptyline, nortiptyline and amitriptylinoxide in man. Drug Metab. Rev. 36, 723–746 (2004).

    Article  CAS  Google Scholar 

  6. Allen, T. M. & Cullis, P. R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    Article  CAS  Google Scholar 

  7. Yamaoka, T., Tabata, Y. & Ikada, Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 83, 601–606 (1994).

    Article  CAS  Google Scholar 

  8. Moghimi, S. M., Hunt, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    CAS  Google Scholar 

  9. Olson, K. R. Poisoning and drug overdose. (Lange Medical Books / McGraw-Hill, New York, 2007).

    Google Scholar 

  10. Rossi, J. & Leroux, J. C. in Role of Lipid Excipients in Modifying Oral and Parenteral Drug Delivery (ed. K. M. Wasan) 88–123 (John Wiley & Sons, Hoboken, 2006).

    Book  Google Scholar 

  11. Morey, T. E. et al. Treatment of local anesthetic-induced cardiotoxicity using drug scavenging nanoparticles. Nano Lett. 4, 757–759 (2004).

    Article  CAS  Google Scholar 

  12. Jovanovic, A. V., Underhill, R. S., Bucholz, T. L. & Duran, R. S. Oil core and silica shell nanocapsules: toward controlling the size and the ability to sequester hydrophobic compounds. Chem. Mater. 17, 3375–3383 (2005).

    Article  CAS  Google Scholar 

  13. Varshney, M. et al. Pluronic microemulsions as nanoreservoirs for extraction of bupivacaine from normal saline. J. Am. Chem. Soc. 126, 5108–5112 (2004).

    Article  CAS  Google Scholar 

  14. Lee, D. W. & Baney, R. H. Oligochitosan derivatives bearing electron-deficient aromatic rings for adsorption of amitryptiline: implications for drug detoxification. Biomacromolecules 5, 1310–1315 (2004).

    Article  CAS  Google Scholar 

  15. Walde, P. & Ichikawa, S. Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol. Eng. 18, 143–177 (2001).

    Article  CAS  Google Scholar 

  16. Cullis, P. R. et al. Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim. Biophys. Acta 1331, 187–211 (1997).

    Article  CAS  Google Scholar 

  17. Leung, P. et al. Encapsulation of thiosulfate:cyanide sulfurtransferase by mouse erythrocytes. Toxicol. Appl. Pharmacol. 83, 101–107 (1986).

    Article  CAS  Google Scholar 

  18. Pei, L., Petrikovics, I. & Way, J. L. Antagonism of the lethal effects of paraoxon by carrier erythrocytes containing phosphotriesterase. Fundam. Appl. Toxicol. 28, 209–214 (1995).

    Article  CAS  Google Scholar 

  19. Petrikovics, I. et al. Antagonism of paraoxon intoxication by recombinant phosphotriesterase encapsulated within sterically stabilized liposomes. Toxicol. Appl. Pharmacol. 156, 56–63 (1999).

    Article  CAS  Google Scholar 

  20. Petrikovics, I. et al. Comparing therapeutic and prophylactic protection against the lethal effect of paraoxon. Toxicol. Sci. 77, 258–262 (2004).

    Article  CAS  Google Scholar 

  21. Petrikovics, I. et al. Long circulating liposomes encapsulating organophosphorus acid anhydrolase in diisopropylfluorophosphate antagonism. Toxicol. Sci. 57, 16–21 (2000).

    Article  CAS  Google Scholar 

  22. Mayer, L. D., Reamer, J. & Bally, M. B. Intravenous pretreatment with empty pH gradient liposomes alters the pharmacokinetics and toxicity of doxorubicin through in vivo active drug encapsulation. J. Pharm. Sci. 88, 96–102 (1999).

    Article  CAS  Google Scholar 

  23. Babu Dhanikula, A., Lamontagne, D. & Leroux, J. C. Rescue of amitriptyline-intoxicated hearts with nanosized vesicles. Cardiovasc. Res. 74, 480–486 (2007).

    Article  Google Scholar 

  24. Simard, P., Hoarau, D., Khalid, M. N., Roux, E. & Leroux, J. C. Preparation and in vivo evaluation of PEGylated spherulite formulations. Biochim. Biophys. Acta 1715, 37–48 (2005).

    Article  CAS  Google Scholar 

  25. Blank, M. L., Cress, E. A., Byrd, B. L., Washburn, L. C. & Snyder, F. Liposomal encapsulated Zn-DTPA for removing intracellular 169Yb. Health Phys. 39, 913–920 (1980).

    Article  CAS  Google Scholar 

  26. Rahman, Y. E., Rosenthal, M. W. & Cerny, E. A. Intracellular plutonium: removal by liposome-encapsulated chelating agents. Science 180, 300–302 (1973).

    Article  CAS  Google Scholar 

  27. Phan, G. et al. Pharmacokinetics of DTPA entrapped in conventional and long-circulating liposomes of different size for plutonium decorporation. J. Controlled Release 110, 177–188 (2005).

    Article  CAS  Google Scholar 

  28. Phan, G. et al. Enhanced decorporation of plutonium by DTPA encapsulated in small PEG-coated liposomes. Biochimie 88, 1843–1849 (2006).

    Article  CAS  Google Scholar 

  29. Weinberg, G. L., VadeBoncouer, T., Ramaraju, G. A., Garcia-Amaro, M. F. & Cwik, M. J. Pretreatment of resuscitation with a lipid infusion shifts the dose-response to bupivacaine-induced asystole in rats. Anesthesiology 88, 1071–1075 (1998).

    Article  CAS  Google Scholar 

  30. Weinberg, G. L., Ripper, R., Feinstein, D. L. & Hoffman, W. Lipid emulsion infusion rescues dogs from bupivacaine-induced cardiac toxicity. Reg. Anesth. Pain Med. 28, 198–202 (2003).

    Article  CAS  Google Scholar 

  31. Rosenblatt, M. A., Abel, M., Fischer, G. W., Itzkovich, C. J. & Eisenkraft, J. B. Successful use of a 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-related cardiac arrest. Anesthesiology 105, 217–221 (2007).

    Article  Google Scholar 

  32. Foxall, G., McCahon, R., Lamb, J., Hardman, J. G. & Bedforth, N. M. Levobupivacaine-induced seizures and cardiovascular collapse treated with Intralipid. Anesthesia 62, 516–518 (2007).

    Article  CAS  Google Scholar 

  33. Babu Dhanikula, A. et al. Long circulating lipid nanocapsules for drug detoxification. Biomaterials 28, 1248–1257 (2007).

    Article  Google Scholar 

  34. Joncheray, T. J. et al. Electrochemical and spectroscopic characterization of organic compound uptake in silica core-shell nanocapsules. Langmuir 22, 8684–8689 (2006).

    Article  CAS  Google Scholar 

  35. Underhill, R. S. et al. Oil-filled silica nanocapsules for lipophilic drug uptake: implications for drug detoxification therapy. Chem. Mater. 14, 4919–4925 (2002).

    Article  CAS  Google Scholar 

  36. Jovanovic, A. V. et al. Surface modification of silica core-shell nanocapsules: biomedical implications. Biomacromolecules 7, 945–949 (2006).

    Article  CAS  Google Scholar 

  37. Mertz, C. J. et al. In vitro studies of functionalized magnetic nanospheres for selective removal of a simulant biotoxin. J. Magn. Magn. Mater. 293, 572–577 (2005).

    Article  CAS  Google Scholar 

  38. Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006).

    Article  CAS  Google Scholar 

  39. Bateman, D. N. Digoxin-specific antibody fragments. Toxicol. Rev. 23, 135–143 (2004).

    Article  CAS  Google Scholar 

  40. Bom, A. et al. A novel concept of reversing neuromuscular blok: chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew. Chem. Int. Edn 41, 266–270 (2002).

    Article  Google Scholar 

  41. Sorgenfrei, I. F. et al. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex. Anesthesiology 104, 667–674 (2006).

    Article  CAS  Google Scholar 

  42. Naguib, M. Sugammadex: another milestone in clinical neuromuscular pharmacology. Anesth. Analg. 104, 575–581 (2007).

    Article  CAS  Google Scholar 

  43. Lee, D. W. et al. Aromatic-aromatic interaction of amitriptyline: implication of overdosed drug detoxification. J. Pharm. Sci. 94, 373–381 (2005).

    Article  CAS  Google Scholar 

  44. Discher, D. E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002).

    Article  CAS  Google Scholar 

  45. O'Reilly, R. K., Hawker, C. J. & Wooley, K. L. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem. Soc. Rev. 35, 1068–1083 (2006).

    Article  CAS  Google Scholar 

  46. Mayes, A. G. & Whitecombe, M. J. Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv. Drug Deliv. Rev. 57, 1742–1778 (2005).

    Article  CAS  Google Scholar 

  47. Jones, M. C. et al. Self-assembled nanocages for hydrophilic guest molecules. J. Am. Chem. Soc. 128, 14599–14605 (2006).

    Article  CAS  Google Scholar 

  48. Lacy, C. F., Armstrong, L. L., Goldman, M. P. & Lance, L. L. Drug Information Handbook edn 14 (Lexi-Comp, Hudson, 2006).

    Google Scholar 

  49. Phan, G. et al. Targeting of diethylene triamine pentaacetic acid encapsulated in liposomes to rat liver: an effective strategy to prevent bone deposition and increase urine elimination of plutonium in rats. Int. J. Radiat. Biol. 80, 413–422 (2004).

    Article  CAS  Google Scholar 

  50. Fallon, M. S. & Chauhan, A. Sequestration of amitriptyline by liposomes. J. Colloid Interface Sci. 300, 7–19 (2006).

    Article  CAS  Google Scholar 

  51. Wang, L. et al. A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc. 128, 13358–13359 (2006).

    Article  CAS  Google Scholar 

  52. Suy, K. et al. Effective reversal of moderate rocuronium- or vecuronium-induced neuromuscular block with sugammadex, a selective relaxant binding agent. Anesthesiology 106, 283–288 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Canada Research Chair program and the Natural Sciences and Engineering Research Council of Canada (NanoIP program) are acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leroux, JC. Injectable nanocarriers for biodetoxification. Nature Nanotech 2, 679–684 (2007). https://doi.org/10.1038/nnano.2007.339

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing