Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ge/Si nanowire mesoscopic Josephson junctions

Abstract

The controlled growth of nanowires (NWs) with dimensions comparable to the Fermi wavelengths of the charge carriers allows fundamental investigations of quantum confinement phenomena. Here, we present studies of proximity-induced superconductivity in undoped Ge/Si core/shell NW heterostructures contacted by superconducting leads. By using a top gate electrode to modulate the carrier density in the NW, the critical supercurrent can be tuned from zero to greater than 100 nA. Furthermore, discrete sub-bands form in the NW due to confinement in the radial direction, which results in stepwise increases in the critical current as a function of gate voltage. Transport measurements on these superconductor–NW–superconductor devices reveal high-order (n = 25) resonant multiple Andreev reflections, indicating that the NW channel is smooth and the charge transport is highly coherent. The ability to create and control coherent superconducting ordered states in semiconductor–superconductor hybrid nanostructures allows for new opportunities in the study of fundamental low-dimensional superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram and device image of a Ge/Si nanowire device.
Figure 2: Transport characteristics of Ge/Si nanowire above and below the superconducting transition temperature.
Figure 3: Multiple Andreev reflections in the Ge/Si nanowire device.
Figure 4: Gate-voltage dependence of critical current and normal conductance.

Similar content being viewed by others

References

  1. Tinkham, M. Introduction to Superconductivity (Dover, New York, 1996).

    Google Scholar 

  2. Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979).

    Article  Google Scholar 

  3. Van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron-gas. Phys. Rev. Lett. 60, 848–850 (1988).

    Article  CAS  Google Scholar 

  4. Beenakker, C. W. J. & Van Houten, H. Josephson current through a superconducting quantum point contact shorter than the coherence length. Phys. Rev. Lett. 66, 3056–3059 (1991).

    Article  CAS  Google Scholar 

  5. Klapwijk, T. M. Proximity effect from an Andreev perspective. J. Supercond. 17, 593–611 (2004).

    Article  CAS  Google Scholar 

  6. Takayanagi, H., Akazaki, T. & Nitta, J. Observation of maximum supercurrent quantization in a superconducting quantum point-contact. Phys. Rev. Lett. 75, 3533–3536 (1995).

    Article  CAS  Google Scholar 

  7. Bauch, T. et al. Correlated quantization of supercurrent and conductance in a superconducting quantum point contact. Phys. Rev. B 71, 174502 (2005).

    Article  Google Scholar 

  8. Muller, C. J., Vanruitenbeek, J. M. & DeJongh, L. J. Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. Phys. Rev. Lett. 69, 140–143 (1992).

    Article  CAS  Google Scholar 

  9. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bulletin 28, 486–491 (2003).

    Article  CAS  Google Scholar 

  10. Samuelson, L. Self-forming nanoscale devices. Mater. Today 6, 22–31 (2003).

    Article  CAS  Google Scholar 

  11. Zhong, Z. H., Fang, Y., Lu, W. & Lieber, C. M. Coherent single charge transport in molecular-scale silicon nanowires. Nano Lett. 5, 1143–1146 (2005).

    Article  CAS  Google Scholar 

  12. De Franceschi, S. et al. Single-electron tunneling in InP nanowires. Appl. Phys. Lett. 83, 344–346 (2003).

    Article  CAS  Google Scholar 

  13. Bjork, M. T. et al. Few-electron quantum dots in nanowires. Nano Lett. 4, 1621–1625 (2004).

    Article  Google Scholar 

  14. Lu, W., Xiang, J., Timko, B. P., Wu, Y. & Lieber, C. M. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl Acad. Sci. USA 102, 10046–10051 (2005).

    Article  CAS  Google Scholar 

  15. Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Article  CAS  Google Scholar 

  16. Doh, Y. J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).

    Article  CAS  Google Scholar 

  17. Van Dam, J. A., Nazarov, Y. V., Bakkers, E. P. A. M., De Franceschi, S. & Kouwenhoven, L. P. Supercurrent reversal in quantum dots. Nature 442, 667–670 (2006).

    Article  CAS  Google Scholar 

  18. Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 19, 1228–1231 (1964).

    Google Scholar 

  19. Octavio, M., Tinkham, M., Blonder, G. E. & Klapwijk, T. M. Subharmonic energy-gap structure in superconducting constrictions. Phys. Rev. B 27, 6739–6746 (1983).

    Article  Google Scholar 

  20. Lauhon, L. J., Gudiksen, M. S., Wang, C. L. & Lieber, C. M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    Article  CAS  Google Scholar 

  21. Van Wees, B. J. et al. Quantum ballistic and adiabatic electron-transport studied with quantum point contacts. Phys. Rev. B 43, 12431–12453 (1991).

    Article  Google Scholar 

  22. Topinka, M. A. et al. Imaging coherent electron flow from a quantum point contact. Science 289, 2323–2326 (2000).

    Article  CAS  Google Scholar 

  23. Cronenwett, S. M. et al. Low-temperature fate of the 0.7 structure in a point contact: A Kondo-like correlated state in an open system. Phys. Rev. Lett. 88, 226805 (2002).

    Article  CAS  Google Scholar 

  24. Kristensen, A. et al. Bias and temperature dependence of the 0.7 conductance anomaly in quantum point contacts. Phys. Rev. B 62, 10950–10957 (2000).

    Article  CAS  Google Scholar 

  25. Tinkham, M., Free, J. U., Lau, C. N. & Markovic, N. Hysteretic I–V curves of superconducting nanowires. Phys. Rev. B 68, 134515 (2003).

    Article  Google Scholar 

  26. Octavio, M., Skocpol, W. J. & Tinkham, M. Improved performance of tin variable-thickness superconducting microbridges. IEEE Trans Magn. 13, 739–742 (1977).

    Article  Google Scholar 

  27. Jarillo-Herrero, P., van Dam, J. A. & Kouwenhoven, L. P. Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953–956 (2006).

    Article  CAS  Google Scholar 

  28. Buitelaar, M. R. et al. Multiple Andreev reflections in a carbon nanotube quantum dot. Phys. Rev. Lett. 91, 057005 (2003).

    Article  CAS  Google Scholar 

  29. Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting micro-constrictions — Excess current, charge imbalance, and super-current conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article  CAS  Google Scholar 

  30. Flensberg, K., Hansen, J. B. & Octavio, M. Subharmonic energy-gap structure in superconducting weak links. Phys. Rev. B 38, 8707–8711 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y.J. Doh and J.U. Free for helpful discussions. M.T. acknowledges support from the National Science Foundation. R.M.W. acknowledges support of this work by DARPA-QuIST and the Nanoscale Science and Engineering Center at Harvard University. C.M.L. acknowledges support of this work by the Defense Advanced Research Projects Agency, Army Research Organization and NSF.

Author information

Authors and Affiliations

Authors

Contributions

J.X. and A.V. performed the experiments and analysed the data with help from M.T. All the authors discussed the results and co-wrote the manuscript.

Corresponding authors

Correspondence to R. M. Westervelt or Charles M. Lieber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, J., Vidan, A., Tinkham, M. et al. Ge/Si nanowire mesoscopic Josephson junctions. Nature Nanotech 1, 208–213 (2006). https://doi.org/10.1038/nnano.2006.140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing