Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Consolidation of human memory over decades revealed by functional magnetic resonance imaging

Abstract

Medial temporal lobe (MTL) lesions typically produce retrograde amnesia characterized by the disproportionate loss of recently acquired memories. Temporally graded memory loss is interpreted traditionally as evidence for a consolidation process guided by the MTL. Here, using functional magnetic resonance imaging (fMRI), we show temporally graded changes in MTL activity in healthy older adults taking a famous faces remote memory test. Evidence for temporally graded change in the hippocampal formation was mixed, suggesting it may participate only in consolidation processes lasting a few years. Entorhinal cortex was associated with temporally graded changes extending up to 20 years. These findings support the basic tenets of consolidation theory and suggest that the entorhinal cortex, rather than the hippocampal formation, participates in memory consolidation over decades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of famous faces stimuli.
Figure 2: Mean percent recall and recognition scores from the famous faces test.
Figure 3: Functional magnetic resonance imaging (fMRI) activation from the famous faces remote memory test.
Figure 4: Temporally graded fMRI activity changes in the entorhinal cortex in two separate analyses.

Similar content being viewed by others

References

  1. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. 1957 [classical article]. J. Neuropsychiatr. Clin. Neurosci. 12, 103–113 (2000).

    Article  CAS  Google Scholar 

  2. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans (erratum, Psychol. Rev. 99, 582, 1992) Psychol. Rev. 99, 195–231 (1992).

    Article  CAS  Google Scholar 

  3. Milner, B., Corkin, S. & Teuber, H. L. Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia 6, 215–234 (1968).

    Article  Google Scholar 

  4. Rempel-Clower, N. L., Zola, S. M., Squire, L. R. & Amaral, D. G. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J. Neurosci. 16, 5233–5255 (1996).

    Article  CAS  Google Scholar 

  5. Squire, L. R., Haist, F. & Shimamura, A. P. The neurology of memory: quantitative assessment of retrograde amnesia in two groups of amnesic patients. J. Neurosci. 9, 828–839 (1989).

    Article  CAS  Google Scholar 

  6. Knowlton, B. J. & Fanselow, M. S. The hippocampus, consolidation and on-line memory. Curr. Opin. Neurobiol. 8, 293–296 (1998).

    Article  CAS  Google Scholar 

  7. McGaugh, J. L. Memory—a century of consolidation. Science 287, 248–251 (2000).

    Article  CAS  Google Scholar 

  8. Squire, L. R. & Alvarez, P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr. Opin. Neurobiol. 5, 169–177 (1995).

    Article  CAS  Google Scholar 

  9. Ivanco, T. L. & Racine, R. J. Long-term potentiation in the reciprocal corticohippocampal and corticocortical pathways in the chronically implanted, freely moving rat. Hippocampus 10, 143–152 (2000).

    Article  CAS  Google Scholar 

  10. Lynch, G. Memory and the brain: unexpected chemistries and a new pharmacology. Neurobiol. Learn. Mem. 70, 82–100 (1998).

    Article  CAS  Google Scholar 

  11. Albert, M. S., Butters, N. & Brandt, J. Patterns of remote memory in amnesic and demented patients. Arch. Neurol. 38, 495–500 (1981).

    Article  CAS  Google Scholar 

  12. Kapur, N. Syndromes of retrograde amnesia: a conceptual and empirical synthesis. Psychol. Bull. 125, 800–825 (1999).

    Article  CAS  Google Scholar 

  13. Kritchevsky, M. & Squire, L. R. Transient global amnesia: evidence for extensive, temporally graded retrograde amnesia. Neurology 39, 213–218 (1989).

    Article  CAS  Google Scholar 

  14. Anagnostaras, S. G., Maren, S. & Fanselow, M. S. Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J. Neurosci. 19, 1106–1114 (1999).

    Article  CAS  Google Scholar 

  15. Fanselow, M. S. Contextual fear, gestalt memories, and the hippocampus. Behav. Brain Res. 110, 73–81 (2000).

    Article  CAS  Google Scholar 

  16. Zola-Morgan, S. M. & Squire, L. R. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science 250, 288–290 (1990).

    Article  CAS  Google Scholar 

  17. Alvarez, P. & Squire, L. R. Memory consolidation and the medial temporal lobe: a simple network model. Proc. Natl. Acad. Sci. USA 91, 7041–7045 (1994).

    Article  CAS  Google Scholar 

  18. McClelland, J. L., McNaughton, B. L. & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    Article  Google Scholar 

  19. Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997).

    Article  CAS  Google Scholar 

  20. Albert, M. S., Butters, N. & Levin, J. Temporal gradients in the retrograde amnesia of patients with alcoholic Korsakoff's disease. Arch. Neurol. 36, 211–216 (1979).

    Article  CAS  Google Scholar 

  21. Marslen-Wilson, W. D. & Teuber, H.-L. Memory for remote events in anterograde amnesia: recognition of public figures from news photographs. Neuropsychologia 13, 353–364 (1975).

    Article  CAS  Google Scholar 

  22. Eichenbaum, H. The hippocampus: the shock of the new. Curr. Biol. 9, R482–484 (1999).

    Article  CAS  Google Scholar 

  23. Knight, R. Contribution of human hippocampal region to novelty detection. Nature 383, 256–259 (1996).

    Article  CAS  Google Scholar 

  24. Parkin, A. J. Human memory: novelty, association and the brain. Curr. Biol. 7, R768–769 (1997).

    Article  CAS  Google Scholar 

  25. Haxby, J. V., Hoffman, E. A. & Gobbini, M. I. The distributed human neural system for face perception. Trends Cogn. Sci. 4, 223–233 (2000).

    Article  CAS  Google Scholar 

  26. Kapur, N., Friston, K. J., Young, A., Frith, C. D. & Frackowiak, R.S. Activation of human hippocampal formation during memory for faces: a PET study. Cortex 31, 99–108 (1995).

    Article  CAS  Google Scholar 

  27. Leveroni, C. L. et al. Neural systems underlying the recognition of familiar and newly learned faces. J. Neurosci. 20, 878–886 (2000).

    Article  CAS  Google Scholar 

  28. Sergent, J., Ohta, S. & MacDonald, B. Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115, 15–36 (1992).

    Article  Google Scholar 

  29. Kapur, N. & Brooks, D. J. Temporally-specific retrograde amnesia in two cases of discrete bilateral hippocampal pathology. Hippocampus 9, 247–254 (1999).

    Article  CAS  Google Scholar 

  30. Zola-Morgan, S., Squire, L. R. & Amaral, D. G. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J. Neurosci. 6, 2950–2967 (1986).

    Article  CAS  Google Scholar 

  31. Markowitsch, H. J. in Principles of Behavioral and Cognitive Neurology 2nd edn. (ed. M.-Marsel Mesulam, E.) 257–293 (Oxford Univ. Press, Oxford, UK, 2000).

    Google Scholar 

  32. Cohen, N. J. & Eichenbaum, H. Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, Massachusetts, 1993).

  33. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    Article  CAS  Google Scholar 

  34. Thornton, J. A., Rothblat, L. A. & Murray, E. A. Rhinal cortex removal produces amnesia for preoperatively learned discrimination problems but fails to disrupt postoperative acquisition and retention in rhesus monkeys. J. Neurosci. 17, 8536–8549 (1997).

    Article  CAS  Google Scholar 

  35. Yoneda, Y., Mori, E., Yamashita, H. & Yamadori, A. MRI volumetry of medial temporal lobe structures in amnesia following herpes simplex encephalitis. Eur. Neurol. 34, 243–252 (1994).

    Article  CAS  Google Scholar 

  36. Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533 (1994).

    Article  CAS  Google Scholar 

  37. Witter, M. P., Wouterlood, F. G., Naber, P. A. & Van Haeften, T. Anatomical organization of the parahippocampal–hippocampal network. Ann. NY Acad. Sci. 911, 1–24 (2000).

    Article  CAS  Google Scholar 

  38. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. & Tanila, H. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226 (1999).

    Article  CAS  Google Scholar 

  39. Milner, P. M. A cell assembly theory of hippocampal amnesia. Neuropsychologia 27, 23–30 (1989).

    Article  CAS  Google Scholar 

  40. Petersen, S. E., van Mier, H., Fiez, J. A. & Raichle, M. E. The effects of practice on the functional anatomy of task performance. Proc. Natl. Acad. Sci. USA 95, 853–860 (1998).

    Article  CAS  Google Scholar 

  41. Moscovitch, M. & Nadel, L. Consolidation and the hippocampal complex revisited: in defense of the multiple-trace model. Curr. Opin. Neurobiol. 8, 297–300 (1998).

    Article  CAS  Google Scholar 

  42. Nadel, L., Samsonovich, A., Ryan, L. & Moscovitch, M. Multiple trace theory of human memory: computational, neuroimaging, and neuropsychological results. Hippocampus 10, 352–368 (2000).

    Article  CAS  Google Scholar 

  43. Maguire, E. A., Henson, R. N. A., Mummery, C. J. & Frith, C. D. Activity in prefrontal cortex, not hippocampus, varies parametrically with the increasing remoteness of memories. Neuroreport 12, 441–444 (2001).

    Article  CAS  Google Scholar 

  44. Cohen, J. D., MacWhinney, B., Flatt, M. & Provost, J. PsyScope: a new graphical interactive environment for designing psychology experiments. Behav. Res. Meth. Instr. Comput. 25, 257–271 (1993).

    Article  Google Scholar 

  45. Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R. & Mazziotta, J. C. Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comp. Assist. Tomogr. 22, 139–152 (1998).

    Article  CAS  Google Scholar 

  46. Woods, R. P., Grafton, S. T., Watson, J. D., Sicotte, N. L. & Mazziotta, J. C. Automated image registration: II. Intersubject validation of linear and nonlinear models. J. Comp. Assist. Tomogr. 22, 153–165 (1998).

    Article  CAS  Google Scholar 

  47. Bandettini, P. A., Jesmanowicz, A., Wong, E. C. & Hyde, J. S. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30, 161–173 (1993).

    Article  CAS  Google Scholar 

  48. Cox, R. W. & Hyde, J. S. Software tools for analysis and visualization of fMRI data. NMR in Biomedicine 10, 171–178 (1997).

    Article  CAS  Google Scholar 

  49. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme Medical, New York, 1988).

    Google Scholar 

  50. Forman, S. D. et al. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn. Reson. Med. 33, 636–647 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Georgia Gerontology Center (award to F.H.). We thank A.W. Song for technical assistance, E. Courchesne and R.-A. Müller for comments on the manuscript, and R. Cox and the Medical College of Wisconsin for making available the AFNI neuroimage analysis program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Haist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haist, F., Gore, J. & Mao, H. Consolidation of human memory over decades revealed by functional magnetic resonance imaging. Nat Neurosci 4, 1139–1145 (2001). https://doi.org/10.1038/nn739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing