Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion

This article has been updated

Abstract

Vertebrate cranial sensory ganglia, responsible for sensation of touch, taste and pain in the face and viscera, are composed of both ectodermal placode and neural crest cells. The cellular and molecular interactions allowing generation of complex ganglia remain unknown. Here, we show that proper formation of the trigeminal ganglion, the largest of the cranial ganglia, relies on reciprocal interactions between placode and neural crest cells in chick, as removal of either population resulted in severe defects. We demonstrate that ingressing placode cells express the Robo2 receptor and early migrating cranial neural crest cells express its cognate ligand Slit1. Perturbation of this receptor-ligand interaction by blocking Robo2 function or depleting either Robo2 or Slit1 using RNA interference disrupted proper ganglion formation. The resultant disorganization mimics the effects of neural crest ablation. Thus, our data reveal a novel and essential role for Robo2-Slit1 signaling in mediating neural crest–placode interactions during trigeminal gangliogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Placode and neural crest cells are in contact during trigeminal gangliogenesis.
Figure 2: Expression of Robo2 mRNA in placode and Slit1 mRNA in neural crest cells during early development of the trigeminal ganglion.
Figure 3: Proper formation of the trigeminal ganglion relies on reciprocal interactions between placode and neural crest.
Figure 4: Inhibition of Robo2 signaling disrupts trigeminal ganglion formation.
Figure 5: Inhibition of Robo2 signaling disrupts the ingression of trigeminal placode cells.
Figure 6: Inhibition of Robo2 signaling disrupts neural crest aggregation into the trigeminal ganglion.
Figure 7: RNAi-mediated knockdown of Robo2 or its ligand Slit1 causes abnormal trigeminal ganglion assembly.

Similar content being viewed by others

Change history

  • 24 February 2008

    In the version of this article initially published, panel d was mistakenly listed in the legend of Figure 1 as x400 magnification. The correct panel should be c. The error has been corrected in the HTML and PDF versions of the article.

References

  1. D'Amico-Martel, A. & Noden, D.M. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am. J. Anat. 166, 445–468 (1983).

    Article  CAS  Google Scholar 

  2. Knecht, A.K. & Bronner-Fraser, M. Induction of the neural crest: a multigene process. Nat. Rev. Genet. 3, 453–461 (2002).

    Article  CAS  Google Scholar 

  3. Baker, C.V. & Bronner-Fraser, M. Vertebrate cranial placodes I. Embryonic induction. Dev. Biol. 232, 1–61 (2001).

    Article  CAS  Google Scholar 

  4. Hamburger, V. Experimental analysis of the dual origin of the trigeminal ganglion in the chick embryo. J. Exp. Zool. 148, 91–123 (1961).

    Article  CAS  Google Scholar 

  5. Lwigale, P.Y. Embryonic origin of avian corneal sensory nerves. Dev. Biol. 239, 323–337 (2001).

    Article  CAS  Google Scholar 

  6. Taneyhill, L.A., Coles, E.G. & Bronner-Fraser, M. Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest. Development 134, 1481–1490 (2007).

    Article  CAS  Google Scholar 

  7. Krull, C.E. et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr. Biol. 7, 571–580 (1997).

    Article  CAS  Google Scholar 

  8. Kasemeier-Kulesa, J.C., Bradley, R., Pasquale, E.B., Lefcort, F. & Kulesa, P.M. Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development 133, 4839–4847 (2006).

    Article  CAS  Google Scholar 

  9. Gammill, L.S., Gonzalez, C. & Bronner-Fraser, M. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. J. Neurobiol. 67, 47–56 (2006).

    Google Scholar 

  10. Coles, E.G., Gammill, L.S., Miner, J.H. & Bronner-Fraser, M. Abnormalities in neural crest cell migration in laminin alpha5 mutant mice. Dev. Biol. 289, 218–228 (2006).

    Article  CAS  Google Scholar 

  11. Kil, S.H., Krull, C.E., Cann, G., Clegg, D. & Bronner-Fraser, M. The alpha4 subunit of integrin is important for neural crest cell migration. Dev. Biol. 202, 29–42 (1998).

    Article  CAS  Google Scholar 

  12. Akitaya, T. & Bronner-Fraser, M. Expression of cell adhesion molecules during initiation and cessation of neural crest cell migration. Dev. Dyn. 194, 12–20 (1992).

    Article  CAS  Google Scholar 

  13. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    Article  CAS  Google Scholar 

  14. Kidd, T., Bland, K.S. & Goodman, C.S. Slit is the midline repellent for the Robo receptor in Drosophila. Cell 96, 785–794 (1999).

    Article  CAS  Google Scholar 

  15. Chedotal, A. Slits and Their Receptors (Landes Bioscience, Springer, New York, 2007).

    Book  Google Scholar 

  16. Zinn, K. & Sun, Q. Slit branches out: a secreted protein mediates both attractive and repulsive axon guidance. Cell 97, 1–4 (1999).

    Article  CAS  Google Scholar 

  17. Kramer, S.G., Kidd, T., Simpson, J.H. & Goodman, C.S. Switching repulsion to attraction: changing responses to slit during transition in mesoderm migration. Science 292, 737–740 (2001).

    Article  CAS  Google Scholar 

  18. Santiago-Martinez, E., Soplop, N.H. & Kramer, S.G. Lateral positioning at the dorsal midline: Slit and Roundabout receptors guide Drosophila heart cell migration. Proc. Natl. Acad. Sci. USA 103, 12441–12446 (2006).

    Article  CAS  Google Scholar 

  19. Loes, S., Luukko, K., Kvinnsland, I.H. & Kettunen, P. Slit1 is specifically expressed in the primary and secondary enamel knots during molar tooth cusp formation. Mech. Dev. 107, 155–157 (2001).

    Article  CAS  Google Scholar 

  20. Anselmo, M.A. et al. Slit and Robo: expression patterns in lung development. Gene Expr. Patterns 3, 13–19 (2003).

    Article  CAS  Google Scholar 

  21. Vargesson, N., Luria, V., Messina, I., Erskine, L. & Laufer, E. Expression patterns of Slit and Robo family members during vertebrate limb development. Mech. Dev. 106, 175–180 (2001).

    Article  CAS  Google Scholar 

  22. Piper, M., Georgas, K., Yamada, T. & Little, M. Expression of the vertebrate Slit gene family and their putative receptors, the Robo genes, in the developing murine kidney. Mech. Dev. 94, 213–217 (2000).

    Article  CAS  Google Scholar 

  23. Begbie, J., Ballivet, M. & Graham, A. Early steps in the production of sensory neurons by the neurogenic placodes. Mol. Cell. Neurosci. 21, 502–511 (2002).

    Article  CAS  Google Scholar 

  24. Moody, S.A., Quigg, M.S. & Frankfurter, A. Development of the peripheral trigeminal system in the chick revealed by an isotype-specific anti-beta-tubulin monoclonal antibody. J. Comp. Neurol. 279, 567–580 (1989).

    Article  CAS  Google Scholar 

  25. D'Amico-Martel, A. & Noden, D.M. An autoradiographic analysis of the development of the chick trigeminal ganglion. J. Embryol. Exp. Morphol. 55, 167–182 (1980).

    CAS  PubMed  Google Scholar 

  26. Cheng, Y., Cheung, M., Abu-Elmagd, M.M., Orme, A. & Scotting, P.J. Chick sox10, a transcription factor expressed in both early neural crest cells and central nervous system. Brain Res. Dev. Brain Res. 121, 233–241 (2000).

    Article  CAS  Google Scholar 

  27. Begbie, J. & Graham, A. Integration between the epibranchial placodes and the hindbrain. Science 294, 595–598 (2001).

    Article  CAS  Google Scholar 

  28. Hammond, R. et al. Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain. Development 132, 4483–4495 (2005).

    Article  CAS  Google Scholar 

  29. Das, R.M. et al. A robust system for RNA interference in the chicken using a modified microRNA operon. Dev. Biol. 294, 554–563 (2006).

    Article  CAS  Google Scholar 

  30. Parsons, L., Harris, K.L., Turner, K. & Whitington, P.M. Roundabout gene family functions during sensory axon guidance in the Drosophila embryo are mediated by both Slit-dependent and Slit-independent mechanisms. Dev. Biol. 264, 363–375 (2003).

    Article  CAS  Google Scholar 

  31. Hivert, B., Liu, Z., Chuang, C.Y., Doherty, P. & Sundaresan, V. Robo1 and Robo2 are homophilic binding molecules that promote axonal growth. Mol. Cell. Neurosci. 21, 534–545 (2002).

    Article  CAS  Google Scholar 

  32. Fouquet, C. et al. Robo1 and robo2 control the development of the lateral olfactory tract. J. Neurosci. 27, 3037–3045 (2007).

    Article  CAS  Google Scholar 

  33. Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205–215 (1998).

    Article  CAS  Google Scholar 

  34. Long, H. et al. Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 42, 213–223 (2004).

    Article  CAS  Google Scholar 

  35. Strickland, P., Shin, G.C., Plump, A., Tessier-Lavigne, M. & Hinck, L. Slit2 and netrin 1 act synergistically as adhesive cues to generate tubular bi-layers during ductal morphogenesis. Development 133, 823–832 (2006).

    Article  CAS  Google Scholar 

  36. Suchting, S., Heal, P., Tahtis, K., Stewart, L.M. & Bicknell, R. Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J. 19, 121–123 (2005).

    Article  CAS  Google Scholar 

  37. Park, K.W. et al. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev. Biol. 261, 251–267 (2003).

    Article  CAS  Google Scholar 

  38. Sabatier, C. et al. The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117, 157–169 (2004).

    Article  CAS  Google Scholar 

  39. Schlosser, G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. J. Exp. Zoolog. B Mol. Dev. Evol. 304, 347–399 (2005).

    Article  Google Scholar 

  40. Northcutt, R.G. & Brandle, K. Development of branchiomeric and lateral line nerves in the axolotl. J. Comp. Neurol. 355, 427–454 (1995).

    Article  CAS  Google Scholar 

  41. Piotrowski, T. & Northcutt, R.G. The cranial nerves of the Senegal bichir, Polypterus senegalus [osteichthyes: actinopterygii: cladistia]. Brain Behav. Evol. 47, 55–102 (1996).

    Article  CAS  Google Scholar 

  42. Ma, L. & Tessier-Lavigne, M. Dual branch-promoting and branch-repelling actions of Slit/Robo signaling on peripheral and central branches of developing sensory axons. J. Neurosci. 27, 6843–6851 (2007).

    Article  CAS  Google Scholar 

  43. Rhee, J. et al. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat. Cell Biol. 4, 798–805 (2002).

    Article  CAS  Google Scholar 

  44. Hatta, K. & Takeichi, M. Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320, 447–449 (1986).

    Article  CAS  Google Scholar 

  45. Kee, Y. & Bronner-Fraser, M. Temporally and spatially restricted expression of the helix-loop-helix transcriptional regulator Id1 during avian embryogenesis. Mech. Dev. 109, 331–335 (2001).

    Article  CAS  Google Scholar 

  46. McLarren, K.W., Litsiou, A. & Streit, A. DLX5 positions the neural crest and preplacode region at the border of the neural plate. Dev. Biol. 259, 34–47 (2003).

    Article  CAS  Google Scholar 

  47. Yuan, W. et al. The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev. Biol. 212, 290–306 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Guthrie for the Robo2Δ-GFP plasmid, members of the M.B.-F. lab for technical support, and S. Fraser, D. Meulemans and T. Hochgreb for comments on the manuscript. This work was supported by US National Institutes of Health (NIH) National Research Service Award 5T32 GM07616 to C.E.S., NIH Minority Supplement grant DE016459-07S1 to P.Y.L., a UK Biotechnology and Biological Sciences Research Council grant to R.M.D. and NIH grant DE16459 to M.B.-F.

Author information

Authors and Affiliations

Authors

Contributions

C.E.S. conducted all the experiments with help from P.Y.L. on the ablation and grafting experiments. C.E.S. designed the experiments and evaluated the data with contributions from P.Y.L. and M.B.-F. R.M.D. and S.A.W. designed and provided the RNAi reagents. C.E.S., P.Y.L. and M.B.-F. wrote the manuscript.

Corresponding author

Correspondence to Marianne Bronner-Fraser.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Methods (PDF 506 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiau, C., Lwigale, P., Das, R. et al. Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion. Nat Neurosci 11, 269–276 (2008). https://doi.org/10.1038/nn2051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing