Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Different roles of ribbon-associated and ribbon-free active zones in retinal bipolar cells

Abstract

Synaptic ribbons with a halo of synaptic vesicles are seen at the active zones of sensory neurons that release transmitter tonically. Thus, ribbons are assumed to be a prerequisite for sustained exocytosis. By applying total internal reflection fluorescence microscopy to goldfish retinal bipolar cell terminals, we visualized Ca2+ entry sites, ribbons, and vesicle fusion events. Here we show that the main Ca2+ entry sites were located at ribbons, and that activation of the Ca2+ current induced immediate and delayed vesicle fusion events at ribbon-associated and ribbon-free 'hot spots', respectively. The activation of protein kinase C (PKC) specifically potentiated vesicle fusion at ribbon-free sites. Electron microscopy showed that PKC activation selectively increased the number of docked vesicles at ribbon-free sites, which faced neuronal processes with the postsynaptic density. Retinal bipolar cells have both ribbon-associated and ribbon-free active zones in their terminals and might send functionally distinct signals through ribbon-associated and ribbon-free synapses to postsynaptic neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ca2+ entry sites and ribbons.
Figure 2: Identification of vesicle fusion.
Figure 3: Spatio-temporal distribution of fusion events.
Figure 4: Effects of PMA on ribbon displacement and spatio-temporal distribution of vesicle fusion events.
Figure 5: Effects of PMA on spatio-temporal distribution of fusion events.
Figure 6: Aggregation of vesicle fusion events at 'hot spots'.
Figure 7: Distribution of synaptic vesicles in the Mb1 bipolar cell terminal.
Figure 8: Ribbon-associated and ribbon-free synapses in a terminal of the Mb1 bipolar cell.

Similar content being viewed by others

References

  1. von Gersdorff, H., Vardi, E., Matthews, G. & Sterling, P. Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released. Neuron 16, 1221–1227 (1996).

    Article  CAS  Google Scholar 

  2. Lenzi, D., Crum, J., Ellisman, M.H. & Roberts, W.M. Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron 36, 649–659 (2002).

    Article  CAS  Google Scholar 

  3. tom Dieck, S. et al. Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J. Cell Biol. 168, 825–836 (2005).

    Article  Google Scholar 

  4. Lenzi, D. & von Gersdorff, H. Structure suggests function: the case for synaptic ribbons as exocytotic nanomachines. Bioessays 23, 831–840 (2001).

    Article  CAS  Google Scholar 

  5. Zhai, R.G. & Bellen, H.J. The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda) 19, 262–270 (2004).

    Google Scholar 

  6. Dowling, J.E. The Retina: an Approachable Part of the Brain (Harvard Univ. Press, Cambridge, Massachusetts, 1987).

    Google Scholar 

  7. Zenisek, D., Davila, V., Wan, L. & Almers, W. Imaging calcium entry sites and ribbon structures in two presynaptic cells. J. Neurosci. 23, 2538–2548 (2003).

    Article  CAS  Google Scholar 

  8. Zenisek, D., Horst, N.K., Merrifield, C., Sterling, P. & Matthews, G. Visualizing synaptic ribbons in the living cell. J. Neurosci. 24, 9752–9759 (2004).

    Article  CAS  Google Scholar 

  9. Zenisek, D., Steyer, J.A. & Almers, W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406, 849–854 (2000).

    Article  CAS  Google Scholar 

  10. Zenisek, D., Steyer, J.A., Feldman, M.E. & Almers, W. A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35, 1085–1097 (2002).

    Article  CAS  Google Scholar 

  11. Llobet, A., Cooke, A. & Lagnado, L. Exocytosis at the ribbon synapse of retinal bipolar cells studied in patches of presynaptic membrane. J. Neurosci. 23, 2706–2714 (2003).

    Article  CAS  Google Scholar 

  12. Mennerick, S. & Matthews, G. Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron 17, 1241–1249 (1996).

    Article  CAS  Google Scholar 

  13. Sakaba, T., Tachibana, M., Matsui, K. & Minami, N. Two components of transmitter release in retinal bipolar cells: exocytosis and mobilization of synaptic vesicles. Neurosci. Res. 27, 357–370 (1997).

    Article  CAS  Google Scholar 

  14. von Gersdorff, H., Sakaba, T., Berglund, K. & Tachibana, M. Submillisecond kinetics of glutamate release from a sensory synapse. Neuron 21, 1177–1188 (1998).

    Article  CAS  Google Scholar 

  15. Suzuki, S. & Kaneko, A. Identification of bipolar cell subtypes by protein kinase C-like immunoreactivity in the goldfish retina. Vis. Neurosci. 5, 223–230 (1990).

    Article  CAS  Google Scholar 

  16. Osborne, N.N., Wood, J. & Groome, N. The occurrence of three calcium-independent protein kinase C subspecies (delta, epsilon and zeta) in retina of different species. Brain Res. 637, 156–162 (1994).

    Article  CAS  Google Scholar 

  17. Minami, N., Berglund, K., Sakaba, T., Kohmoto, H. & Tachibana, M. Potentiation of transmitter release by protein kinase C in goldfish retinal bipolar cells. J. Physiol. (Lond.) 512, 219–225 (1998).

    Article  CAS  Google Scholar 

  18. Berglund, K., Midorikawa, M. & Tachibana, M. Increase in the pool size of releasable synaptic vesicles by the activation of protein kinase C in goldfish retinal bipolar cells. J. Neurosci. 22, 4776–4785 (2002).

    Article  CAS  Google Scholar 

  19. von Gersdorff, H. Synaptic ribbons: versatile signal transducers. Neuron 29, 7–10 (2001).

    Article  CAS  Google Scholar 

  20. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  21. Tachibana, M., Okada, T., Arimura, T., Kobayashi, K. & Piccolino, M. Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina. J. Neurosci. 13, 2898–2909 (1993).

    Article  CAS  Google Scholar 

  22. Steyer, J.A. & Almers, W. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys. J. 76, 2262–2271 (1999).

    Article  CAS  Google Scholar 

  23. Becherer, U., Moser, T., Stuhmer, W. & Oheim, M. Calcium regulates exocytosis at the level of single vesicles. Nat. Neurosci. 6, 846–853 (2003).

    Article  CAS  Google Scholar 

  24. Diggle, P.J. Statistical Analysis of Spatial Point Patterns (Arnold, London, 2003).

    Google Scholar 

  25. Allen, M.B. Structure, physiology, and biochemistry of the chryophyceae. Annu. Rev. Microbiol. 23, 29–46 (1969).

    Article  CAS  Google Scholar 

  26. Hull, C., Studholme, K., Yazulla, S. & von Gersdorff, H. Diurnal changes in exocytosis and the number of synaptic ribbons at active zones of an ON-type bipolar cell terminal. J. Neurophysiol. 96, 2025–2033 (2006).

    Article  Google Scholar 

  27. Raviola, E. & Raviola, G. Structure of the synaptic membranes in the inner plexiform layer of the retina: a freeze-fracture study in monkeys and rabbits. J. Comp. Neurol. 209, 233–248 (1982).

    Article  CAS  Google Scholar 

  28. Roberts, W.M., Jacobs, R.A. & Hudspeth, A.J. The hair cell as a presynaptic terminal. Ann. NY Acad. Sci. 635, 221–233 (1991).

    Article  CAS  Google Scholar 

  29. von Gersdorff, H. & Matthews, G. Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal. J. Neurosci. 17, 1919–1927 (1997).

    Article  CAS  Google Scholar 

  30. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515 (1994).

    Article  CAS  Google Scholar 

  31. Heidelberger, R. Adenosine triphosphate and the late steps in calcium-dependent exocytosis at a ribbon synapse. J. Gen. Physiol. 111, 225–241 (1998).

    Article  CAS  Google Scholar 

  32. Feigenspan, A. & Bormann, J. Modulation of GABAC receptors in rat retinal bipolar cells by protein kinase C. J. Physiol. (Lond.) 481, 325–330 (1994).

    Article  CAS  Google Scholar 

  33. Gillette, M.A. & Dacheux, R.F. Protein kinase modulation of GABAA currents in rabbit retinal rod bipolar cells. J. Neurophysiol. 76, 3070–3086 (1996).

    Article  CAS  Google Scholar 

  34. Job, C. & Lagnado, L. Calcium and protein kinase C regulate the actin cytoskeleton in the synaptic terminal of retinal bipolar cells. J. Cell Biol. 143, 1661–1672 (1998).

    Article  CAS  Google Scholar 

  35. Khimich, D. et al. Hair cell synaptic ribbons are essential for synchronous auditory signaling. Nature 434, 889–894 (2005).

    Article  CAS  Google Scholar 

  36. Dick, O. et al. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37, 775–786 (2003).

    Article  CAS  Google Scholar 

  37. Ball, S.L. et al. Role of the β2 subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest. Ophthalmol. Vis. Sci. 43, 1595–1603 (2002).

    PubMed  Google Scholar 

  38. Tachibana, M. & Okada, T. Release of endogenous excitatory amino acids from ON-type bipolar cells isolated from the goldfish retina. J. Neurosci. 11, 2199–2208 (1991).

    Article  CAS  Google Scholar 

  39. Suzuki, S., Tachibana, M. & Kaneko, A. Effects of glycine and GABA on isolated bipolar cells of the mouse retina. J. Physiol. (Lond.) 421, 645–662 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Asaka for participation in early experiments and S. Tokimura for excellent technical assistance. This work was supported by JSPS Grants-in-Aid for Scientific Research (18300132) and Grant-in-Aid for Scientific Research on Priority Areas from MEXT (12053212, 18019012) to M.T.

Author information

Authors and Affiliations

Authors

Contributions

M.M. conducted the main body of the physiological experiments, Y.T. carried out the electron microscopic studies, K.B. contributed the data analysis of the electron microscopy, M.I. carried out the immunohistochemistry, and M.T. wrote the manuscript and supervised the project.

Corresponding author

Correspondence to Masao Tachibana.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Table 1 (PDF 128 kb)

Supplementary Video 1

Synaptic ribbons and Ca2+ entry sites. Visualization by fluorescein-conjugated CtBP-biding peptide and Fluo-5F. A goldfish Mb1 bipolar cell terminal under a TIRF microscope with 488-nm illumination. Before depolarization, five ribbons are observed. Upon depolarization, Ca2+ emerged at ribbons. Picture size is 10.24 × 10.24 μm (40 nm pixel−1). (MOV 123 kb)

Supplementary Video 2

Fusion of FM-labeled vesicles in a goldfish Mb1 bipolar cell terminal under a TIRF microscope. Images were acquired for 3.5 s every 36.4 ms. Picture size is 10.24 × 10.24 μm (40 nm pixel−1). (MOV 257 kb)

Supplementary Video 3

Fusion of 'Resident'. The vesicle intensity was already high before fusion. Picture size is 1.24 × 1.24 μm (40 nm pixel−1). Averaged image from ten fusion events. (MOV 57 kb)

Supplementary Video 4

Fusion of 'Newcomer'. The vesicle intensity was increased abruptly from background before fusion. Picture size is 1.24 × 1.24 μm (40 nm pixel−1). Averaged image from five fusion events. (MOV 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Midorikawa, M., Tsukamoto, Y., Berglund, K. et al. Different roles of ribbon-associated and ribbon-free active zones in retinal bipolar cells. Nat Neurosci 10, 1268–1276 (2007). https://doi.org/10.1038/nn1963

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing